Skip to main content

Advertisement

Log in

Periprothetische Infektionen nach Hüfttotalendoprothese mit ESBL-bildenden Bakterien

Bedeutung für die klinische Praxis

Periprosthetic infections following total hip replacement with ESBL-forming bacteria

Importance for clinical practice

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Periprothetische Infektionen stellen eine gefürchtete Komplikation nach endoprothetischem Hüftgelenkersatz dar. Ein gesteigertes Infektionsrisiko besteht nach Wechseloperationen im Vergleich zur primären Implantation einer Hüftendoprothese. Weiterhin stellen die zunehmenden Resistenzen von Hospitalkeimen eine zusätzliche Bedrohung für den Patient und die endoprothetische Versorgung dar.

Extended-spectrum-β-Laktamase- (ESBL-)bildende Enterobakterien sind unter den multiresistenten Hospitalismuskeimen die am zweithäufigsten gefundenen Erreger. ESBL sind bakterielle Enzyme, welche die Fähigkeit besitzen, Cefalosporine der dritten und vierten Generation zu hydrolysieren und zur Ausbildung entsprechender Resistenzen beizutragen. Obwohl ESBL-bildende Bakterien bereits in den frühen 1980er Jahren erstmals beschrieben wurden, fanden sie bisher kaum spezifische Beachtung in der Orthopädie und Unfallchirurgie.

Im vorliegenden Artikel geben wir einen Überblick zur Epidemiologie und Diagnose von ESBL-Bildnern und zeigen die Schwierigkeiten bei der Behandlung periprothetischer Infektionen mit multiresistenten Bakterien auf. Weiterhin werden die im Zusammenhang mit ESBL-Bildnern besonderen hygienischen Maßnahmen und Therapieformen vorgestellt. Aufgrund eigener Erhebungen gehen wir davon aus, dass Infektionen mit ESBL-produzierenden Bakterien in der Orthopädischen Chirurgie keine Seltenheit mehr darstellen.

Abstract

Implant infections remain feared and severe complications after total hip replacement. An even higher rate of periprosthetic infections can be observed after revision surgery in comparison to primary total hip replacement. An additional threat for patients with artificial joints arises from the fact that bacteria resistant to a multitude of antibiotics are encountered with increasing frequency in the hospital setting.

Among these the enterobacteria producing extended spectrum β-lactamases (ESBL) are the second most frequent group of multiresistant pathogens. ESBLs are enzymes which possess the ability to hydrolyse third and fourth generation cephalosporins resulting in a distinctive resistance against these antibiotics. Even though ESBLs were first described in the early 1980’s and now represent pathogens of utmost importance in intensive care units, they have been hardly considered in orthopedic and trauma surgery.

In the present manuscript we provide an overview of the epidemiology and diagnostics of ESBL-expressing bacteria and demonstrate the difficulties in managing implant-associated infections with resistant bacteria. Furthermore, we emphasize the importance of recognizing ESBL-positive bacteria as increasingly important pathogens which require special precautions and treatment. Clinical evaluations suggest that ESBLs in orthopedic and trauma surgery are not a rare phenomenon any more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Malchau H, Herberts P, Eisler T et al (2002) The Swedish Total Hip Replacement Register. J Bone Joint Surg [Am] 84-A(suppl 2):2–20

  2. Geipel U, Hermann M (2004) Das infizierte Implantat. Teil 1: Bakteriologie. Orthopade 33:1411–1428

    Article  PubMed  CAS  Google Scholar 

  3. Ip D, Yam SK, Chen CK (2005) Implications of the changing pattern of bacterial infections following total joint replacement. J Orthop Surg 13(2):125–130

    CAS  Google Scholar 

  4. Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4):657–686

    Article  PubMed  CAS  Google Scholar 

  5. Witte W, Mielke M (2003) β-Laktamasen mit breitem Wirkungsspektrum. Grundlagen, Epidemiologie, Schlussfolgerungen für die Prävention. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 46:881–890

    Article  Google Scholar 

  6. Haenle M, Gollwitzer H, Ellenrieder M et al (2010) Peri-prosthetic infection following total hip arthroplasty. Eur Musculoskel Rev 5(2):60–63

    Google Scholar 

  7. Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10(4):867–878

    Article  PubMed  CAS  Google Scholar 

  8. Ambler RP, Meadway RJ (1969) Chemical structure of bacterial penicillinases. Nature 222(5188):24–26

    Article  PubMed  CAS  Google Scholar 

  9. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39(6):1211–1233

    PubMed  CAS  Google Scholar 

  10. Jacoby GA (1994) Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 13(suppl 1):S2–S11

    Article  PubMed  Google Scholar 

  11. Livermore DM (2008) Defining an extended-spectrum beta-lactamase. Clin Microbiol Infect 14(suppl 1):3–10

    Article  PubMed  CAS  Google Scholar 

  12. Giske CG, Sundsfjord AS, Kahlmeter G et al (2009) Redefining extended-spectrum beta-lactamases: balancing science and clinical need. J Antimicrob Chemother 63(1):1–4

    Article  PubMed  CAS  Google Scholar 

  13. Jacoby GA, Munoz-Price LS (2005) The new beta-lactamases. N Engl J Med 352(4):380–391

    Article  PubMed  CAS  Google Scholar 

  14. Paterson DL, Rossi F, Baquero F et al (2005) In vitro susceptibilities of aerobic and facultative gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: the 2003 Study for Monitoring Antimicrobial Resistance Trends (SMART). J Antimicrob Chemother 55(6):965–973

    Article  PubMed  CAS  Google Scholar 

  15. Coque TM, Baquero F, Canton R (2008) Increasing prevalence of ESBL-producing enterobacteriaceae in Europe. Euro Surveill 13(47), pii: 19044

    Google Scholar 

  16. Bradford PA, Urban C, Jaiswal A et al (1995) SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother 39(4):899–905

    PubMed  CAS  Google Scholar 

  17. Bird J, Browning R, Hobson RP et al (1998) Multiply-resistant Klebsiella pneumoniae: failure of spread in community-based elderly care facilities. J Hosp Infect 40(3):243–247

    Article  PubMed  CAS  Google Scholar 

  18. Gastmeier P (2008) Prevention of nosocomial infections. Chirurg 79(3):263–272

    Article  PubMed  CAS  Google Scholar 

  19. Siegel JD, Rhinehart E, Jackson M, Chiarello L (2007) 2007 Guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 35(10 suppl 2):S65–S164

    Article  PubMed  Google Scholar 

  20. Reddy P, Malczynski M, Obias A et al (2007) Screening for extended-spectrum beta-lactamase-producing enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis 45(7):846–852

    Article  PubMed  CAS  Google Scholar 

  21. Garvin KL, Hinrichs SH, Urban JA (1999) Emerging antibiotic-resistant bacteria. Their treatment in total joint arthroplasty. Clin Orthop Relat Res 369:110–123

    Article  PubMed  Google Scholar 

  22. Haenle M, Podbielski A, Mittelmeier W et al (2010) Infections after primary and revision total hip replacement caused by enterobacteria producing extended spectrum beta-lactamases (ESBL): a case series. Hip Int 20(2):248–254

    PubMed  Google Scholar 

  23. Martinez-Pastor JC, Vilchez F, Pitart C et al (2010) Antibiotic resistance in orthopaedic surgery: acute knee prosthetic joint infections due to extended-spectrum beta-lactamase (ESBL)-producing enterobacteriaceae. Eur J Clin Microbiol Infect Dis 29(8):1039–1041

    Article  PubMed  CAS  Google Scholar 

  24. Esposito S, Capuano A, Noviello S et al (2003) Modification of patients‘ endogenous bacterial flora during hospitalization in a large teaching hospital in Naples. J Chemother 15(6):568–573

    PubMed  CAS  Google Scholar 

  25. Pinto Pereira LM, Phillips M, Ramlal H et al (2004) Third generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: need for an antibiotic policy. BMC Infect Dis 4(1):59

    Article  Google Scholar 

  26. Maegele M, Gregor S, Steinhausen E et al (2005) The long-distance tertiary air transfer and care of tsunami victims: injury pattern and microbiological and psychological aspects. Crit Care Med 33(5):1136–1140

    Article  PubMed  Google Scholar 

  27. Bercion R, Gaudeuille A, Mapouka PA et al (2007) Surgical site infection survey in the orthopaedic surgery department of the „hopital communautaire de Bangui,“ Central African Republic. Bull Soc Pathol Exot 100(3):197–200

    PubMed  CAS  Google Scholar 

  28. Ribes J, Rapp RP (2005) Why is the microbiology lab calling about an extended-spectrum beta-lactamase bacterium from a wound culture? Orthopedics 28(11):1322–1325

    PubMed  Google Scholar 

  29. Zimmerli W (1995) Role of antibiotics in the treatment of infected joint prosthesis. Orthopade 24(4):308–313

    PubMed  CAS  Google Scholar 

  30. Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 39(9):887–898

    Article  PubMed  CAS  Google Scholar 

  31. Tenover FC, Mohammed MJ, Gorton TS, Dembek ZF (1999) Detection and reporting of organisms producing extended-spectrum beta-lactamases: survey of laboratories in Connecticut. J Clin Microbiol 37(12):4065–4070

    PubMed  CAS  Google Scholar 

  32. Standards NCfCL (2005) Performance standards for antimicrobial susceptibility testing; 15th informational supplement (M100-S15). National Committee for Clinical Laboratory Standards, Wayne, PA

  33. Pfaller MA, Segreti J (2006) Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clin Infect Dis 42(suppl 4):S153–S163

    Article  PubMed  CAS  Google Scholar 

  34. Rupp ME, Fey PD (2003) Extended spectrum beta-lactamase (ESBL)-producinge Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 63(4):353–365

    Article  PubMed  CAS  Google Scholar 

  35. Geisel R, Schmitz FJ, Dettenkofer M (2006) Multiresistente Erreger (MRSA und VRE) sowie andere nosokomiale Problemkeime. In: Daschner F, Dettenkofer M, Frank U, Scherer M (Hrsg) Praktische Krankenhaushygiene und Umweltschutz, 3. Aufl. Springer, Berlin Heidelberg New York, S 174–187

  36. Siegel JD, Rhinehart E, Jackson M, Chiarello L (2007) Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 35(10 suppl 2):S165–S193

    Article  PubMed  Google Scholar 

  37. Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166

    Article  PubMed  CAS  Google Scholar 

  38. Pitout JD, Nordmann P, Laupland KB, Poirel L (2005) Emergence of enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother 56(1):52–59

    Article  PubMed  CAS  Google Scholar 

  39. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654

    Article  PubMed  CAS  Google Scholar 

  40. Lohmann CH, Furst M, Niggemeyer O, Ruther W (2007) The treatment of periprosthetic infections. Z Rheumatol 66(1):28–33

    Article  PubMed  CAS  Google Scholar 

  41. Hendrich C, Frommelt L, Eulert J (2004) Septische Gelenk- und Knochenchirurgie. Springer, Berlin Heidelberg New York

  42. Frommelt L (2004) Guidelines on antimicrobial therapy in situations of periprosthetic THR infection. Orthopade 33(7):822–828

    Article  PubMed  CAS  Google Scholar 

  43. Persson C, Baleani M, Guandalini L et al (2006) Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement. Acta Orthop 77(4):617–621

    Article  PubMed  Google Scholar 

  44. Baleani M, Persson C, Zolezzi C et al (2008) Biological and biomechanical effects of vancomycin and meropenem in acrylic bone cement. J Arthroplasty 23(8):1232–1238

    Article  PubMed  Google Scholar 

  45. Solomon AW, Stott PM, Duffy K et al (2011) Elution and antibacterial activity of meropenem from implanted acrylic bone cement. J Antimicrob Chemother 65(8):1834–1835

    Article  Google Scholar 

  46. Mückley T, Hierholzer C, Diefenbeck M et al (2004) Behandlung der MRSA-Infektion in der septischen Extremitätenchirurgie. Chirurg 74:269–275

    Article  Google Scholar 

  47. Walls RJ, Roche SJ, O’Rourke A, McCabe JP (2008) Surgical site infection with methicillin-resistant Staphylococcus aureus after primary total hip replacement. J Bone Joint Surg [Br] 90(3):292–298

    Google Scholar 

  48. Hornberg C, Knoop D, Kipp F (2006) Bedeutung von MRSA in der Patientenversorgung. Epidemiologie, Prophylaxe und Therapie. Orthopade 35:1159–1168

    Article  PubMed  CAS  Google Scholar 

  49. Geiss HK (2002) Hygienemaßnahmen in der Orthopädie: „deutsch“ oder „amerikanisch“. Orthopade 31:1045–1047

    Article  PubMed  CAS  Google Scholar 

  50. Podbielski A (2010) MRE-Multiresistente Gram-negative Erreger. Inst. f. Med. Mikrobiologie, Virologie & Hygiene, Universitätsklinik Rostock, Krankenhaushygiene. http://www.imikro.uni-rostock.de/Doku/Hygiene/HMB/MRE.pdf

  51. European Centre for Disease Prevention and Control (2010) Antimicrobial resistance surveillance in Europe 2009. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC, Stockholm

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haenle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haenle, M., Podbielski, A., Ellenrieder, M. et al. Periprothetische Infektionen nach Hüfttotalendoprothese mit ESBL-bildenden Bakterien. Orthopäde 40, 528–534 (2011). https://doi.org/10.1007/s00132-011-1762-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-011-1762-1

Schlüsselwörter

Keywords

Navigation