Skip to main content

Advertisement

Log in

Wachstumsfaktoren und Signalmoleküle zur Anwendung im „Tissue Engineering“

Targeting und innovative Releasesysteme

Tissue engineering of cartilage and bone

Growth factors and signaling molecules

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Moderne Tissue-Engineering-Strategien stützen sich auf die Kombination von Zellen, Scaffolds sowie Signalmolekülen und Wachstumsfaktoren. Für das „Tissue Engineering“ von Knorpel und Knochen stellt die Wachstumsfuge der langen Röhrenknochen eine interessante, gut organisierte Struktur mit Chondrozyten in unterschiedlichen Proliferations- und Differenzierungsstadien in einem Scaffold aus unterschiedlichen Komponenten der extrazellulären Matrix dar. Die Proliferation und Differenzierung dieser Chondrozyten wird durch eine große Zahl hormoneller und parakriner Faktoren reguliert. Der Beitrag diskutiert einige wichtige Wachstumsfaktoren der enchondralen Ossifikation und zeigt an einem Beispiel auf, wie, ausgehend vom „Targeting“ in der Wachstumsfuge, ein solches Molekül in ein Releasesystem für Tissue-Engineering-Strategien integriert werden kann.

Abstract

Modern tissue engineering concepts integrate cells, scaffolds, signaling molecules and growth factors. In tissue engineering of cartilage, the growth plate of the long bone represents an interesting, well-organized developmental structure, with a spatial distribution of chondrocytes in different proliferation and differentiation stages embedded in a scaffold of extracellular matrix components. The proliferation and differentiation of these chondrocytes is regulated by various hormonal and paracrine factors. This article discusses some important growth factors in the process of endochondral ossification and demonstrates how this information could be translated into a controlled release system for different tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Abad V, Meyers JL, Weise M et al (2002) The role of the resting zone in growth plate chondrogenesis. Endocrinology 143:1851–1857

    Article  PubMed  CAS  Google Scholar 

  2. Anghelina M, Sjostrom D, Perera P et al (2008) Regulation of biomechanical signals by NF-kappaB transcription factors in chondrocytes. Biorheology 45:245–256

    PubMed  Google Scholar 

  3. Aoyama T, Liang B, Okamoto T et al (2005) PGE2 signal through EP2 promotes the growth of articular cartilage. J Bone Miner Res 20:377–389

    Article  PubMed  CAS  Google Scholar 

  4. Ballock RT, O’Keefe RJ (2003) The biology of the growth plate. J Bone Joint Surg 85:715–726

    PubMed  Google Scholar 

  5. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tiss Eng Reg Med 2:81–96

    Article  CAS  Google Scholar 

  6. Brochhausen C, Halstenberg S, Sanchez N et al (2008) Prostaglandin E2 as an innovative signalling molecule for the tissue engineering of cartilage. Tissue Eng 14:771

    Google Scholar 

  7. Brochhausen C, Lehmann M, Halstenberg S et al (2009) Signalling molecules and growth factors for tissue engineering of cartilage – What can we learn from the growth plate? J Tiss Eng Reg Med (Epub ahead of print); DOI: 10.1002/term.192

  8. Brochhausen C, Neuland P, Kirkpatrick CJ et al (2006) Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ – PGE2 dependent proliferation of growth plate chondrocytes. Arthritis Res Ther 8:R78

    Article  PubMed  CAS  Google Scholar 

  9. Brochhausen C, Zehbe R, Gross U et al (2007) Perspectives for the tissue engineering of cartilage from a biological and biomaterial point of view. J Appl Biomater Biomech 5:70–81

    CAS  Google Scholar 

  10. Brochhausen C, Zehbe R, Watzer B et al (2008) Immobilization and Controlled Release of Prostaglandin E2 (PGE2) from Poly-l-lactideco-glycolide Microspheres. J Biomed Mater Res A (Epub ahead of print); DOI: 10.1002/jbm.a.32215

  11. Bygdeman M (2003) Pharmacokinetics of prostaglandins. Best Pract Res Clin Obstet Gynaecol 17:707–716

    Article  PubMed  Google Scholar 

  12. Flanagan AM, Chambers TJ (1992) Stimulation of bone nodule formation in vitro by prostaglandins E1 and E2. Endocrinology 130:443–448

    Article  PubMed  CAS  Google Scholar 

  13. Forriol F, Shapiro F (2005) Bone development - Interaction of molecular components and biophysical forces. Clin Orthop Relat Res 432:14–33

    Article  PubMed  Google Scholar 

  14. Gabler F, Frauenschuh S, Ringe J et al (2007) Emulsion-based Synthesis of PLGA-Microspheres for the in vitro Expansion of Porcine Chondrocytes. Biomol Eng 24:512–520

    Google Scholar 

  15. Gerber HP, Vu TH, Ryan AM et al (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  PubMed  CAS  Google Scholar 

  16. Ghodgaonkar RB, Dubin NH, Blake DA et al (1979) 13,14-dihydro-15-keto-prostaglandin F2alpha concentrations in human plasma and amniotic fluid. Am J Obstet Gynecol 134:265–269

    PubMed  CAS  Google Scholar 

  17. Gibson G (1998) Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech 43:191–204

    Article  PubMed  CAS  Google Scholar 

  18. Grimsrud CD Romano PR, D’Souza M et al (2001) BMP signalling stimulates chondocyte maturation and expression of indian hedgehog. J Orthop Res 19:18–25

    Article  PubMed  CAS  Google Scholar 

  19. Hiraki Y, Shukunami C, Iyama K et al (2001) Differentiation of chondrogenic precursor cells during the regeneration of articular cartilage. Osteoarthritis Cartilage 9(Suppl A):102–108

    Article  Google Scholar 

  20. Hunziker EB (1994) Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech 28:505–519

    Article  PubMed  CAS  Google Scholar 

  21. Hunziker EB, Schenk RK, Cruz-Orive LM (1987) Quantitation of the chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg 69:162–173

    PubMed  CAS  Google Scholar 

  22. Knobloch TJ, Madhavan S, Nam J et al (2008) Regulation of chondrocytic gene expression by biomechanical signals. Crit Rev Eukaryot Gene Expr 18:139–150

    PubMed  CAS  Google Scholar 

  23. Kömhoff M, Wang JL, Cheng HF et al (2000) Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int 57:414–422

    PubMed  Google Scholar 

  24. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  PubMed  CAS  Google Scholar 

  25. Kronenberg HM (2006) PTHrP and skeletal development. Ann NY Acad Sci 1068:1–13

    Article  PubMed  CAS  Google Scholar 

  26. Lee K, Lanske B, Karaplis AC et al (1996) Parathyroid hormone- related peptid delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137:5109–5118

    Article  PubMed  CAS  Google Scholar 

  27. Lewinson D, Silbermann M (1992) Chondroclasts and endothelial cells collaborate in the process of cartilage resorption. Anat Rec 233:504–514

    Article  PubMed  CAS  Google Scholar 

  28. Liu Z, Lavine KJ, Hung IH et al (2007) FGF-18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 302:80–91

    Article  PubMed  CAS  Google Scholar 

  29. Murakami S, Kan M, McKehaan WL et al (2000) Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 97:1113–1118

    Article  PubMed  CAS  Google Scholar 

  30. Neal BC, Rodgers A, Clark T et al (2000) A systematic survey of 13 randomized trials of non-steroidal anti-inflammatory drugs for the prevention of heterogenic bone formation after major hip surgery. Acta Orthop Scand 71:122–128

    Article  PubMed  CAS  Google Scholar 

  31. Nilsson O, Parker EA, Hegde A et al (2007) Gradients in bone morphogenetic protein-related gene expression across the growth plate. J Endocrinol 193:75–84

    Article  PubMed  CAS  Google Scholar 

  32. Paralka VM, Borovecki F, Ke HZ et al (2003) An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci USA 100:6436–6740

    Google Scholar 

  33. Pizette S, Niswander L (2000) BMPs are required at two steps of limb chondrogenesis: Formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 219:237–249

    Article  PubMed  CAS  Google Scholar 

  34. Reddi AH (2003) Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic materials. Tissue Eng 6:351–359

    Article  Google Scholar 

  35. Schwartz Z, Gilley RM, Sylvia VL et al (1998) The effect of prostaglandin E2 on costochondral chondrocyte differentiation is mediated by cyclic adenosine 3’,5’-monophosphate and protein kinase C. Endocrinology 139:1825–1834

    Article  PubMed  CAS  Google Scholar 

  36. Shiang R, Thompson LM, Zhu YZ et al (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342

    Article  PubMed  CAS  Google Scholar 

  37. Sylvia VL, Del Toro F, Dean DD et al (2001) Effects of 1alpha,25-(OH)(2)D(3) on rat growth zone chondrocytes are mediated via cyclooxygenase-1 and phospholipase A(2). J Cell Biochem 81:32–45

    Article  Google Scholar 

  38. Volk SW, Leboy PS (1999) Regulating the regulators of chondrocyte hypertrophy. J Bone Miner Res 14:483–486

    Article  PubMed  CAS  Google Scholar 

  39. Watzer B, Zehbe R, Halstenberg S et al (2009) Stability of prostaglandin E2 (PGE2) embedded in poly-D,L-lactide-co-glycolide microspheres - a pre-conditioning approach for tissue engineering applications. J Mat Science: Mater Med (Epub ahead of print) DOI: 10.1007/s10856-008-3678-9

    Google Scholar 

  40. Weinreb M, Rutledge SJ, Rodan GA (1997) Systemic administration of an anabolic dose of prostaglandin E2 induces early-response genes in rat bones. Bone 20:347–353

    Article  PubMed  CAS  Google Scholar 

  41. Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1:267–280

    Article  PubMed  CAS  Google Scholar 

  42. Yang RS, Liu TK, Lin-Shiau SY (1993) Increased bone growth by local prostaglandin E2 in rats. Calcif Tissue Int 52:57–61

    Article  PubMed  CAS  Google Scholar 

  43. Yoon BS, Pogue R, Ovchinnikov DA et al (2006) BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 133:4667–4678

    Article  PubMed  CAS  Google Scholar 

  44. Zehbe R, Brochhausen C, Haibel A et al (2006) Synchrotron tomography on PLA-Microsphere filled Scaffolds. Biomaterialien 7(3):249

    Google Scholar 

  45. Zehbe R, Haibel A, Brochhausen C et al (2007) Characterization of oriented protein-ceramic and protein-polymer-composites for cartilage tissue engineering using synchrotron µ-CT. Int J Mat Res 98:562–568

    CAS  Google Scholar 

  46. Zhang X, Schwarz EM, Young DA et al (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109:1405–1415

    PubMed  CAS  Google Scholar 

  47. Zou H, Wieser R, Massague J et al (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11:2191–2203

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde im Rahmen des Europäischen Exzellenznetzwerks für Tissue Engineering (EXPERTISSUES) durchgeführt und finanziell unterstützt durch die Firma NovoNordisk.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brochhausen.

Additional information

Teile dieses Manuskriptes wurden bei den Michaelis Lectures am Trinity College in Cambridge (UK) am 26. Nov. 2008 präsentiert.

Dieser Beitrag enthält Material der medizinischen Doktorarbeit von Frau Meike Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brochhausen, C., Lehmann, M., Zehbe, R. et al. Wachstumsfaktoren und Signalmoleküle zur Anwendung im „Tissue Engineering“. Orthopäde 38, 1053–1062 (2009). https://doi.org/10.1007/s00132-009-1496-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1496-5

Schlüsselwörter

Keywords

Navigation