Skip to main content

Advertisement

Log in

Möglichkeiten und Grenzen des „tissue engineering“ des vorderen Kreuzbandes

Possibilities and limits in tissue engineering of the anterior cruciate ligament

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Aktuelle Methoden zur Kreuzbandrekonstruktion mit Sehnentransplantaten erfüllen mittelfristig ihren Zweck der Kniegelenkstabilisierung, jedoch kann der komplexe, dreidimensionale anatomische Aufbau eines vorderen Kreuzbandes mit einem singulären oder auch doppelten Sehnenstrang nur unzureichend wiederhergestellt werden. Deshalb versucht man, mit Hilfe des „tissue engineering“ Alternativen zu finden. Das Prinzip ist die Besiedelung eines resorbierbaren Trägermaterials mit geeigneten Zellen, die durch biologische und mechanische Stimulation eine bandähnliche extrazelluläre Matrix generieren sollen und die anschließende Implantation als Kreuzbandersatz. Es wurden verschiedene natürliche und synthetische Materialien und ihre generelle Eignung als Zellträger beschrieben. Allerdings weisen die meisten Materialien eine zu geringe Zug- und Verschleißfestigkeit auf, was einen zusätzlichen temporären Lastträger erfordert. Es konnte gezeigt werden, dass ein biologisch induzierter Kreuzbandersatz grundsätzlich das Potential hat, Konstrukte mit bandähnlicher Matrix zu erzeugen, der Schritt von der Grundlagenforschung zur klinischen Anwendbarkeit jedoch noch nicht vollzogen werden konnte.

Abstract

Although current concepts of cruciate ligament reconstruction using tendon transplants provide midterm knee joint stabilization, a single-bundle or double-bundle tendon cannot adequately restore the complex three-dimensional structure of the anterior cruciate ligament. Therefore, researchers are attempting to develop alternatives using tissue engineering technology. The basic principle includes seeding of suitable cells on a resorbable carrier construct, in vitro biological and mechanical stimulation to generate a ligament-like extracellular matrix, and subsequent implantation as a cruciate ligament bioprosthesis. Several natural and synthetic materials have proven to be suitable as cell carriers; however, most of these exhibit inadequate tensile strength as well as minor fatigue properties, making an additional load carrier necessary. In principle, research has shown that tissue engineering technology is capable of generating a construct with a ligament-like extracellular matrix. However, the step from basic research to clinical application has not yet been taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Altman GH, Horan RL, Lu HH et al (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141

    Article  CAS  PubMed  Google Scholar 

  2. Altman GH, Lu HH, Horan RL et al (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124:742–749

    Article  PubMed  Google Scholar 

  3. Bosch U, Kasperczyk WJ (1992) Healing of the patellar tendon autograft after posterior cruciate ligament reconstruction–a process of ligamentization? An experimental study in a sheep model. Am J Sports Med 20:558–566

    Article  CAS  PubMed  Google Scholar 

  4. Bosch U, Krettek C (2002) Tissue engineering of tendons and ligaments. A new challenge. Unfallchirurg 105:88–94

    Article  CAS  PubMed  Google Scholar 

  5. Butler DL, Juncosa-Melvin N, Boivin GP et al (2008) Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 26:1–9

    Article  PubMed  Google Scholar 

  6. Cacou C, Palmer D, Lee DA et al (2000) A system for monitoring the response of uniaxial strain on cell seeded collagen gels. Med Eng Phys 22:327–333

    Article  CAS  PubMed  Google Scholar 

  7. Carson EW, Anisko EM, Restrepo C et al (2004) Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 17:127–132

    PubMed  Google Scholar 

  8. Chen J, Altman GH, Karageorgiou V et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67:559–570

    Article  PubMed  CAS  Google Scholar 

  9. Cristino S, Grassi F, Toneguzzi S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A 73:275–283

    CAS  PubMed  Google Scholar 

  10. Dunn WR, Lincoln AE, Hinton RY et al (2003) Occupational disability after hospitalization for the treatment of an injury of the anterior cruciate ligament. J Bone Joint Surg Am 85:1656–1666

    PubMed  Google Scholar 

  11. Dürselen L, Dauner M, Hierlemann H et al (2001) Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res A 58:666–672

    Article  Google Scholar 

  12. Dürselen L, Dauner M, Hierlemann H et al (2003) Control of material stiffness during degradation for constructs made of absorbable polymer fibers. J Biomed Mater Res B Appl Biomater 67:697–701

    Article  PubMed  CAS  Google Scholar 

  13. Dürselen L, Häfner M, Ignatius A et al (2006) Biological response to a new composite polymer augmentation device used for cruciate ligament reconstruction. J Biomed Mater Res B Appl Biomater 76:265–272

    PubMed  Google Scholar 

  14. Fan H, Liu H, Toh SL et al (2008) Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 29:1017–1027

    Article  CAS  PubMed  Google Scholar 

  15. Fan H, Liu H, Wong EJ et al (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29:3324–3337

    Article  CAS  PubMed  Google Scholar 

  16. Fluck J, Querfeld C, Cremer A et al (1998) Normal human primary fibroblasts undergo apoptosis in three-dimensional contractile collagen gels. J Invest Dermatol 110:153–157

    Article  CAS  PubMed  Google Scholar 

  17. Funakoshi T, Majima T, Iwasaki N et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A 74:338–346

    PubMed  Google Scholar 

  18. Ge Z, Yang F, Goh JC et al (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res A 77:639–652

    PubMed  Google Scholar 

  19. Heckmann L, Schlenker HJ, Fiedler J et al (2007) Human mesenchymal progenitor cell responses to a novel textured poly(L-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B Appl Biomater 81:82–90

    PubMed  Google Scholar 

  20. Horan RL, Toponarski I, Boepple HE et al (2009) Design and characterization of a scaffold for anterior cruciate ligament engineering. J Knee Surg 22:82–92

    Article  PubMed  Google Scholar 

  21. Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17:971–980

    Article  CAS  PubMed  Google Scholar 

  22. Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26:7530–7536

    Article  CAS  PubMed  Google Scholar 

  23. Louboutin H, Debarge R, Richou J et al (2008) Osteoarthritis in patients with anterior cruciate ligament rupture: A review of risk factors. Knee 5(4):255–262

    Google Scholar 

  24. Lu HH, Cooper JA Jr, Manuel S et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816

    Article  CAS  PubMed  Google Scholar 

  25. Meredick RB, Vance KJ, Appleby D et al (2008) Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 36:1414–1421

    Article  PubMed  Google Scholar 

  26. Park Y, Sugimoto M, Watrin A et al (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13:527–536

    Article  CAS  PubMed  Google Scholar 

  27. Petrigliano FA, Mcallister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22:441–451

    PubMed  Google Scholar 

  28. Rhodes NP, Srivastava JK, Smith RF et al (2004) Metabolic and histological analysis of mesenchymal stem cells grown in 3-D hyaluronan-based scaffolds. J Mater Sci Mater Med 15:391–395

    Article  CAS  PubMed  Google Scholar 

  29. Woo SL, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  30. Zimny ML, Schutte M, Dabezies E (1986) Mechanoreceptors in the human anterior cruciate ligament. Anat Rec 214:204–209

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ignatius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatius, A., Dürselen, L. Möglichkeiten und Grenzen des „tissue engineering“ des vorderen Kreuzbandes. Orthopäde 38, 1080–1086 (2009). https://doi.org/10.1007/s00132-009-1492-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1492-9

Schlüsselwörter

Keywords

Navigation