Skip to main content

Advertisement

Log in

Tenozyten und extrazelluläre Matrix

Eine wechselseitige Beziehung

Tenocytes and the extracellular matrix

A reciprocal relationship

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Tenozyten sind die charakteristischen Zellen der Sehnen und Bänder, welche für den Auf- und Umbau der extrazellulären Matrix verantwortlich sind. Sie reagieren auf äußere Reize und ermöglichen die funktionelle Anpassung des Proteoglykan- und Kollagengerüsts an die mechanische Beanspruchung. Sie bilden über zahlreiche Fortsätze ein komplexes miteinander kommunizierendes Netzwerk, welches gemeinsame gerichtete Reaktionen zeigt. Sehnen unterliegen wie alle Gewebe des menschlichen Körpers einer altersbedingten Veränderung, welche die Zellen, aber auch die strukturelle Organisation und damit die Funktion der extrazellulären Matrix beeinflusst. Funktion und Organisation der Sehnen werden darüber hinaus durch mechanische Beanspruchung, das Auftreten verschiedener Zytokine im Gewebe und die Gabe antiphlogistisch wirkender Pharmaka beeinflusst.

Abstract

The characteristic cells in tendons and ligaments are called tenocytes, which are responsible for the formation and turnover of the extracellular matrix. They react to external stimuli and facilitate the functional adaptation of the proteoglycan and collagen network to mechanical requirements. Via numerous cellular processes they form a complex communicating network which demonstrates coordinated directional reactions. As is common to all tissues in the human body, tendons are subject to age changes which influence the tenocytes, but additionally the structural organization and hence the function of the extracellular matrix. The function and organization of tendons are also affected by mechanical forces, as well as by various cytokines produced in the tissue and by the application of anti-inflammatory medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Alexander RM (1991) Elastic mechanisms in primate locomotion. Z Morphol Anthropol 78:315–320

    PubMed  CAS  Google Scholar 

  2. Alm A, Stromberg B (1974) Vascular anatomy of the patellar and cruciate ligaments. A microangiographic and histologic investigation in the dog. Acta Chir Scand 445:25–35

    CAS  Google Scholar 

  3. Banes AJ, Donlon K, Link GW et al (1988) Cell populations of tendon: a simplified method for isolation of synovial cells and internal fibroblasts: confirmation of origin and biologic properties. J Orthop Res 6:83–94

    Article  PubMed  CAS  Google Scholar 

  4. Barkhausen T, van Griensven M, Zeichen J, Bosch U (2003) Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol 55:153–158

    Article  PubMed  Google Scholar 

  5. Benjamin M, Evans EJ, Copp L (1986) The histology of tendon attachments to bone in man. J Anat 149:89–100

    PubMed  CAS  Google Scholar 

  6. Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J Anat 193:481–494

    Article  PubMed  Google Scholar 

  7. Benjamin M, Toumi H, Suzuki D et al (2007) Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheum 56:224–233

    Article  PubMed  CAS  Google Scholar 

  8. Birk DE, Zycband E (1994) Assembly of the tendon extracellular matrix during development. J Anat 184:457–463

    PubMed  Google Scholar 

  9. Bozec L, van der Heijden G, Horton M (2007) Collagen fibrils: nanoscale ropes. Biophys J 92:70–75

    Article  PubMed  CAS  Google Scholar 

  10. Brockis JG (1953) The blood supply of the flexor and extensor tendons of the fingers in man. J Bone Joint Surg Br 35:131–138

    PubMed  Google Scholar 

  11. Brown D, Wagner D, Li X et al (1999) Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development 126:4317–4329

    PubMed  CAS  Google Scholar 

  12. Buchanan CI, Marsh RL (2002) Effects of exercise on the biomechanical, biochemical and structural properties of tendons. Comp Biochem Physiol 133:1101–1107

    Article  Google Scholar 

  13. Chiquet-Ehrismann R, Tucker RP (2004) Connective tissues: signalling by tenascins. Int J Biochem Cell Biol 36:1085–1089

    Article  PubMed  CAS  Google Scholar 

  14. Circi E, Akpinar S, Balcik C et al (2009) Biomechanical and histological comparison of the influence of oestrogen deficient state on tendon healing potential in rats. Int Orthop (Epub ahead of print)

  15. Cook JL, Kiss ZS, Ptasznik R, Malliaras P (2005) Is vascularity more evident after exercise? Implications for tendon imaging. Am J Roentgenol 185:1138–1140

    Article  Google Scholar 

  16. Dennis KJ, McKinney S (1990) Sesamoids and accessory bones of the foot. Clin Podiatr Med Surg 7:717–723

    PubMed  CAS  Google Scholar 

  17. Docheva D, Hunziker EB, Fassler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25:699–705

    Article  PubMed  CAS  Google Scholar 

  18. Dressler MR, Butler DL, Wenstrup R et al (2002) A potential mechanism for age-related declines in patellar tendon biomechanics. J Orthop Res 20:1315–1322

    Article  PubMed  CAS  Google Scholar 

  19. Edwards DA (1946) The blood supply and lymphatic drainage of tendons. J Anat 80:147–152 142

    PubMed  CAS  Google Scholar 

  20. Elsalanty M, Makarov M, Cherkashin A et al (2007) Changes in pennate muscle architecture after gradual tibial lengthening in goats. Anat Rec (Hoboken) 290:461–467

    Article  Google Scholar 

  21. Evans CE, Trail IA (2001) An in vitro comparison of human flexor and extensor tendon cells. J Hand Surg Br 26:307–313

    Article  PubMed  CAS  Google Scholar 

  22. Fallon J, Blevins FT, Vogel K, Trotter J (2002) Functional morphology of the supraspinatus tendon. J Orthop Res 20:920–926

    Article  PubMed  Google Scholar 

  23. Flick J, Devkota A, Tsuzaki M et al (2006) Cyclic loading alters biomechanical properties and secretion of PGE2 and NO from tendon explants. Clin Biomech (Bristol, Avon) 21:99–106

    Google Scholar 

  24. Franchi M, Fini M, Quaranta M et al (2007) Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat 210:1–7

    Article  PubMed  Google Scholar 

  25. Fukuta S, Oyama M, Kavalkovich K et al (1998) Identification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol 17:65–73

    Article  PubMed  CAS  Google Scholar 

  26. Ginsburg JH, Whiteside LA, Piper TL (1980) Nutrient pathways in transferred patellar tendon used for anterior cruciate ligament reconstruction. Am J Sports Med 8:15–18

    Article  PubMed  CAS  Google Scholar 

  27. Jozsa L, Kannus P, Jarvinen TA et al (1998) Blood flow in rat gastrocnemius muscle and Achilles tendon after Achilles tenotomy. Eur Surg Res 30:125–129

    Article  PubMed  CAS  Google Scholar 

  28. Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6:11–23

    Article  PubMed  CAS  Google Scholar 

  29. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  PubMed  CAS  Google Scholar 

  30. Koshima H, Kondo S, Mishima S et al (2007) Expression of interleukin-1beta, cyclooxygenase-2, and prostaglandin E2 in a rotator cuff tear in rabbits. J Orthop Res 25:92–97

    Article  PubMed  CAS  Google Scholar 

  31. Kostopoulos E, Casoli V, Verolino P, Papadopoulos O (2006) Arterial blood supply of the extensor apparatus of the long fingers. Plast Reconstr Surg 117:2310–2319

    Article  PubMed  CAS  Google Scholar 

  32. Kubo K, Kanehisa H, Ito M, Fukunaga T (2001) Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol 91:26–32

    PubMed  CAS  Google Scholar 

  33. Kubo K, Kanehisa H, Kawakami Y, Fukanaga T (2001) Growth changes in the elastic properties of human tendon structures. Int J Sports Med 22:138–143

    Article  PubMed  CAS  Google Scholar 

  34. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T (2001) Effects of repeated muscle contractions on the tendon structures in humans. Eur J Appl Physiol 84:162–166

    Article  PubMed  CAS  Google Scholar 

  35. Kurokawa S, Fukunaga T, Fukashiro S (2001) Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol 90:1349–1358

    PubMed  CAS  Google Scholar 

  36. Landis WJ, Silver FH (2002) The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol 133:1135–1157

    Article  Google Scholar 

  37. Langberg H, Bulow J, Kjaer M (1998) Blood flow in the peritendinous space of the human Achilles tendon during exercise. Acta Physiol Scand 163:149–153

    Article  PubMed  CAS  Google Scholar 

  38. Langberg H, Rosendal L, Kjaer M (2001) Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans. J Physiol 534:297–302

    Article  PubMed  CAS  Google Scholar 

  39. Langberg H, Skovgaard D, Petersen LJ et al (1999) Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol 521(Pt 1):299–306

    Article  PubMed  CAS  Google Scholar 

  40. Lichtwark GA, Wilson AM (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol 208:4715–4725

    Article  PubMed  CAS  Google Scholar 

  41. Maganaris CN (2002) Tensile properties of in vivo human tendinous tissue. J Biomech 35:1019–1027

    Article  PubMed  Google Scholar 

  42. Magnusson SP, Qvortrup K, Larsen JO et al (2002) Collagen fibril size and crimp morphology in ruptured and intact Achilles tendons. Matrix Biol 21:369–377

    Article  PubMed  CAS  Google Scholar 

  43. Majima T, Yasuda K, Tsuchida T et al (2003) Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci 8:836–841

    Article  PubMed  Google Scholar 

  44. Mallick E, Scutt N, Scutt A, Rolf C (2009) Passage and concentration-dependent effects of Indomethacin on tendon derived cells. J Orthop Surg Res 4:9

    Article  PubMed  Google Scholar 

  45. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR (1996) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189(Pt 3):593–600

    PubMed  Google Scholar 

  46. Michna H, Hartmann G (1989) Adaptation of tendon collagen to exercise. Int Orthop 13:161–165

    Article  PubMed  CAS  Google Scholar 

  47. Mikolyzk DK, Wei AS, Tonino P et al (2009) Effect of corticosteroids on the biomechanical strength of rat rotator cuff tendon. J Bone Joint Surg Am 91:1172–1180

    Article  PubMed  Google Scholar 

  48. Miller BF, Olesen JL, Hansen M et al (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567:1021–1033

    Article  PubMed  CAS  Google Scholar 

  49. Milz S, Benjamin M, Putz R (2005) Molecular parameters indicating adaptation to mechanical stress in fibrous connective tissue. Adv Anat Embryol Cell Biol 178:1–71

    Article  PubMed  CAS  Google Scholar 

  50. Murchison ND, Price BA, Conner DA et al (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134:2697–2708

    Article  PubMed  CAS  Google Scholar 

  51. Ottani V, Martini D, Franchi M et al (2002) Hierarchical structures in fibrillar collagens. Micron 33:587–596

    Article  PubMed  CAS  Google Scholar 

  52. Petersen W, Bobka T, Stein V, Tillmann B (2000) Blood supply of the peroneal tendons: injection and immunohistochemical studies of cadaver tendons. Acta Orthop Scand 71:168–174

    Article  PubMed  CAS  Google Scholar 

  53. Petersen W, Hohmann G, Stein V, Tillmann B (2002) The blood supply of the posterior tibial tendon. J Bone Joint Surg Am 84:141–144

    Article  CAS  Google Scholar 

  54. Petersen W, Pufe T, Kurz B et al (2002) Angiogenesis in fetal tendon development: spatial and temporal expression of the angiogenic peptide vascular endothelial cell growth factor. Anat Embryol (Berl) 205:263–270

    Article  CAS  Google Scholar 

  55. Petersen W, Pufe T, Zantop T, Paulsen F (2003) Blood supply of the flexor hallucis longus tendon with regard to dancer’s tendinitis: injection and immunohistochemical studies of cadaver tendons. Foot Ankle 24:591–596

    PubMed  Google Scholar 

  56. Prado MP, de Carvalho AE Jr, Rodrigues CJ et al (2006) Vascular density of the posterior tibial tendon: a cadaver study. Foot Ankle 27:628–631

    PubMed  Google Scholar 

  57. Pryce BA, Watson SS, Murchison ND et al (2009) Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development 136:1351–1361

    Article  PubMed  CAS  Google Scholar 

  58. Pufe T, Petersen W, Kurz B et al (2003) Mechanical factors influence the expression of endostatin--an inhibitor of angiogenesis – in tendons. J Orthop Res 21:610–616

    Article  PubMed  CAS  Google Scholar 

  59. Puxkandl R, Zizak I, Paris O et al (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos Trans R Soc Lond B Biol Sci 357:191–197

    Article  PubMed  CAS  Google Scholar 

  60. Qi J, Fox AM, Alexopoulos LG et al (2006) IL-1beta decreases the elastic modulus of human tenocytes. J Appl Physiol 101:189–195

    Article  PubMed  CAS  Google Scholar 

  61. Rees JD, Wilson AM, Wolman RL (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45:508–521

    Google Scholar 

  62. Reeves ND (2006) Adaptation of the tendon to mechanical usage. J Musculoskelet Neuronal Interact 6:174–180

    PubMed  CAS  Google Scholar 

  63. Robinson PS, Lin TW, Reynolds PR et al (2004) Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J Biomech Eng 126:252–257

    Article  PubMed  Google Scholar 

  64. Roukis TS, Hurless JS, Page JC (1996) Functional significance of torsion of the tendon of tibialis posterior. J Am Podiatr Med Assoc 86:156–163

    PubMed  CAS  Google Scholar 

  65. Sanders JE, Goldstein BS (2001) Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses. J Biomech 34:1581–1587

    Article  PubMed  CAS  Google Scholar 

  66. Sargon MF, Ozlu K, Oken F (2005) Age-related changes in human tendo calcaneus collagen fibrils. Saudi Med J 26:425–428

    PubMed  Google Scholar 

  67. Scapinelli R (1968) Studies on the vasculature of the human knee joint. Acta Anat 70:305–331

    Article  PubMed  CAS  Google Scholar 

  68. Schweitzer R, Chyung JH, Murtaugh LC et al (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    PubMed  CAS  Google Scholar 

  69. Screen HR, Lee DA, Bader DL, Shelton JC (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng 218:109–119

    Article  CAS  Google Scholar 

  70. Shukunami C, Takimoto A, Oro M, Hiraki Y (2006) Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 298:234–247

    Article  PubMed  CAS  Google Scholar 

  71. Strocchi R, De Pasquale V, Guizzardi S et al (1991) Human Achilles tendon: morphological and morphometric variations as a function of age. Foot Ankle Int 12:100–104

    CAS  Google Scholar 

  72. Sun Y, Berger EJ, Zhao C et al (2006) Mapping lubricin in canine musculoskeletal tissues. Connect Tissue Res 47:215–221

    Article  PubMed  Google Scholar 

  73. Szoke G, Lee SH, Simpson AH, Prescott J (2005) Response of the tendon during limb lengthening. J Bone Joint Surg 87:583–587

    CAS  Google Scholar 

  74. Szomor ZL, Appleyard RC, Murrell GA (2006) Overexpression of nitric oxide synthases in tendon overuse. J Orthop Res 24:80–86

    Article  PubMed  CAS  Google Scholar 

  75. Tempfer H, Gehwolf R, Lehner C et al (2009) Effects of crystalline glucocorticoid triamcinolone acetonide on cultered human supraspinatus tendon cells. Acta Orthop (Epub ahead of print)

  76. Tsuzaki M, Guyton G, Garrett W et al (2003) IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res 21:256–264

    Article  PubMed  CAS  Google Scholar 

  77. Waggett AD, Benjamin M, Ralphs JR (2006) Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol 85:1145–1154

    Article  PubMed  CAS  Google Scholar 

  78. Wan Nar Wong M, Lui WT, Fu SC et al (2009) The effect of glucocorticoids on tendon cell viability in human tendon explants. Acta Orthop (Epub ahead of print)

  79. Wang JH, Li Z, Yang G, Khan M (2004) Repetitively stretched tendon fibroblasts produce inflammatory mediators. Clin Orthop Relat Res 422:243–250

    Article  PubMed  Google Scholar 

  80. Wong MW, Tang YN, Fu SC et al (2004) Triamcinolone suppresses human tenocyte cellular activity and collagen synthesis. Clin Orthop Relat Res 422:277–281

    Article  Google Scholar 

  81. Wong MW, Tang YY, Lee SK, Fu BS (2005) Glucocorticoids suppress proteoglycan production by human tenocytes. Acta Orthop 76:927–931

    Article  PubMed  Google Scholar 

  82. Xia W, Szomor Z, Wang Y, Murrell GA (2006) Nitric oxide enhances collagen synthesis in cultured human tendon cells. J Orthop Res 24:159–172

    Article  PubMed  CAS  Google Scholar 

  83. Yahia LH, Drouin G (1989) Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J Orthop Res 7:243–251

    Article  PubMed  CAS  Google Scholar 

  84. Yang G, Im HJ, Wang JH (2005) Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 363:166–172

    Article  PubMed  CAS  Google Scholar 

  85. Yoshizawa T, Takizawa F, Iizawa F et al (2004) Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol Cell Biol 24:3460–3472

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Milz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milz, S., Ockert, B. & Putz, R. Tenozyten und extrazelluläre Matrix. Orthopäde 38, 1071–1079 (2009). https://doi.org/10.1007/s00132-009-1490-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1490-y

Schlüsselwörter

Keyword

Navigation