Skip to main content

Advertisement

Log in

Chondrozyten – ein Zelltyp, verschiedene Subpopulationen

Merkmale und Verhalten verschiedener Chondrozyten und Implikationen für deren Einsatz zum „Tissue Engineering“

Chondrocytes – one cell type, different subpopulations

Characteristics and behavior of different types of chondrocytes and implications for tissue engineering applications

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Chondrozyten stellen die wichtigste Zellquelle für das „Tissue Engineering“ von Knorpelgewebe dar. Abhängig von der Gewebeart und der Lokalisation innerhalb eines Gewebes können sich diese Zellen jedoch unterschiedlich verhalten. In zahlreichen Studien wurden Gelenk-, Nasenseptum-, Ohr- und Rippenknorpelzellen verglichen, Unterschiede zwischen Knie- und Sprunggelenkknorpel ermittelt und topographische Variationen innerhalb eines Gelenks festgestellt. Außerdem muss die Zonenstruktur des Gelenkknorpels in Betracht gezogen werden, die zu unterschiedlichen Merkmalen von Chondrozyten der Oberfläche verglichen mit tieferen Zonen führt. Mehrere Studien weisen jedoch darauf hin, dass sich selbst ausdifferenzierte Chondrozyten durch eine gewisse Plastizität auszeichnen und danach streben, sich phänotypisch an eine mechanische und biochemische Umgebung anzupassen. Ziel dieses Beitrags ist es, Gemeinsamkeiten und Unterschiede von Chondrozyten verschiedener Gewebe, Zonen und topographischer Stellen aufzuzeigen. Im Besonderen soll eine Übersicht über Resultate, die in vergleichenden Studien gewonnen wurden, gegeben werden. Mögliche Konsequenzen für Tissue-engineering-Modelle werden diskutiert.

Abstract

Chondrocytes represent the most important cell source for engineering of cartilaginous tissues. Depending on the tissue type and the localization within the tissue, these cells may behave differently. Numerous studies have been done to compare articular, nasal, auricular, and costal chondrocytes in order to evaluate differences between knee and ankle joint cartilage and to investigate topographical variations within an articular joint. Moreover, the zonal structure of articular cartilage needs to be considered because it leads to phenotypical differences between chondrocytes of the superficial and the deeper zones. Several studies indicate, however, that even differentiated chondrocytes demonstrate a certain plasticity and strive to adapt their phenotypes to a new mechanical and biochemical environment. The aim of this review is to report on similarities and differences of chondrocytes from different tissues, zones, and topographical locations. In particular, an overview of recent results from comparative studies is presented, and possible consequences for the design of tissue engineering models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Buchberger M, Grad S, Stoddart MJ et al (2009) The response of articular chondrocytes from different topographical locations of the knee to mechanical stimulation. Trans ORS 55:1213

    Google Scholar 

  2. Candrian C, Bonacina E, Frueh JA et al (2009) Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis Cartilage 17:489–496

    Article  CAS  PubMed  Google Scholar 

  3. Candrian C, Vonwil D, Barbero A et al (2008) Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum 58:197–208

    Article  CAS  PubMed  Google Scholar 

  4. Chung C, Erickson IE, Mauck RL et al (2008) Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng A 14:1121–1131

    Article  CAS  Google Scholar 

  5. Cole AA, Kuettner KE (2002) Molecular basis for differences between human joints. Cell Mol Life Sci 59:19–26

    Article  CAS  PubMed  Google Scholar 

  6. Darling EM, Hu JC, Athanasiou KA (2004) Zonal and topographical differences in articular cartilage gene expression. J Orthop Res 22:1182–1187

    Article  CAS  PubMed  Google Scholar 

  7. Darling EM, Zauscher S, Guilak F (2006) Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 14:571–579

    Article  CAS  PubMed  Google Scholar 

  8. Henderson JH, Welter JF, Mansour JM et al (2007) Cartilage tissue engineering for laryngotracheal reconstruction: comparison of chondrocytes from three anatomic locations in the rabbit. Tissue Eng 13:843–853

    Article  CAS  PubMed  Google Scholar 

  9. Hu JC, Athanasiou KA (2006) Chondrocytes from different zones exhibit characteristic differences in high density culture. Connect Tissue Res 47:133–140

    Article  CAS  PubMed  Google Scholar 

  10. Hwang NS, Varghese S, Lee HJ et al (2007) Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS Lett 581:4172–4178

    Article  CAS  PubMed  Google Scholar 

  11. Isogai N, Kusuhara H, Ikada Y et al (2006) Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 12:691–703

    Article  CAS  PubMed  Google Scholar 

  12. Kafienah W, Jakob M, Demarteau O et al (2002) Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng 8:817–826

    Article  CAS  PubMed  Google Scholar 

  13. Kim TK, Sharma B, Williams CG et al (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage 11:653–664

    Article  PubMed  Google Scholar 

  14. Klein TJ, Schumacher BL, Schmidt TA et al (2003) Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthritis Cartilage 11:595–602

    Article  CAS  PubMed  Google Scholar 

  15. Kusuhara H, Isogai N, Enjo M et al (2009) Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 17:136–146

    Article  PubMed  Google Scholar 

  16. Lee J, Lee E, Kim HY et al (2007) Comparison of articular cartilage with costal cartilage in initial cell yield, degree of dedifferentiation during expansion and redifferentiation capacity. Biotechnol Appl Biochem 48:149–158

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Yao S, Alini M et al (2007) Different response of articular chondrocyte subpopulations to surface motion. Osteoarthritis Cartilage 15:1034–1041

    Article  CAS  PubMed  Google Scholar 

  18. Little CB, Ghosh P (1997) Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis Cartilage 5:49–62

    Article  CAS  PubMed  Google Scholar 

  19. Malicev E, Kregar-Velikonja N, Barlic A et al (2008) Comparison of articular and auricular cartilage as a cell source for the autologous chondrocyte implantation. J Orthop Res 2008

  20. Neu CP, Khalafi A, Komvopoulos K et al (2007) Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. Arthritis Rheum 56:3706–3714

    Article  CAS  PubMed  Google Scholar 

  21. Nugent-Derfus GE, Takara T, O’neill JK et al (2007) Continuous passive motion applied to whole joints stimulates chondrocyte biosynthesis of PRG4. Osteoarthritis Cartilage 15:566–574

    Article  CAS  PubMed  Google Scholar 

  22. Rogers BA, Murphy CL, Cannon SR et al (2006) Topographical variation in glycosaminoglycan content in human articular cartilage. J Bone Joint Surg Br 88:1670–1674

    Article  CAS  PubMed  Google Scholar 

  23. Sharma B, Williams CG, Kim TK et al (2007) Designing zonal organization into tissue-engineered cartilage. Tissue Eng 13:405–414

    Article  CAS  PubMed  Google Scholar 

  24. Stenhamre H, Slynarski K, Petren C et al (2008) Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint. Osteoarthritis Cartilage 16:1356–1362

    Article  CAS  PubMed  Google Scholar 

  25. Tay AG, Farhadi J, Suetterlin R et al (2004) Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 10:762–770

    Article  PubMed  Google Scholar 

  26. Van Osch GJ, Mandl EW, Jahr H et al (2004) Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology 41:411–421

    Google Scholar 

  27. Vanderploeg EJ, Wilson CG, Levenston ME (2008) Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading. Osteoarthritis Cartilage 16:1228–1236

    Article  CAS  PubMed  Google Scholar 

  28. Vinatier C, Gauthier O, Fatimi A et al (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102:1259–1267

    Article  CAS  PubMed  Google Scholar 

  29. Vinatier C, Gauthier O, Masson M et al (2009) Nasal chondrocytes and fibrin sealant for cartilage tissue engineering. J Biomed Mater Res A 89:176–185

    CAS  PubMed  Google Scholar 

  30. Waldman SD, Grynpas MD, Pilliar RM et al (2003) The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. J Orthop Res 21:132–138

    Article  PubMed  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grad PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grad, S., Salzmann, G. Chondrozyten – ein Zelltyp, verschiedene Subpopulationen. Orthopäde 38, 1038–1044 (2009). https://doi.org/10.1007/s00132-009-1489-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1489-4

Schlüsselwörter

Keywords

Navigation