Skip to main content

Advertisement

Log in

„Delayed Gadolinium Enhanced MRI of Cartilage“ (dGEMRIC)

Molekulare MRT-Bildgebung des Hüftgelenkknorpels

Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC)

Molecular MRI of hip joint cartilage

  • Übersichten
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Am Hüftgelenk führen präarthrotische Zustände wie Instabilität und Impingement zu pathologischen Belastungen des Gelenkknorpels und sind Risikofaktoren für die Entwicklung einer vorzeitigen Arthrose. Neben weiteren Faktoren ist die Indikation zur chirurgischen Intervention entscheidend von der präoperativen Einschätzung der Knorpelqualität abhängig.

Zur intravitalen Knorpelbeurteilung werden zunehmend molekulare MRT-Verfahren eingesetzt, die bei breiter klinischer Anwendung zukünftig zu einem Paradigmenwechsel in der Beurteilung und Behandlung von Knorpelschäden und Früharthrose führen könnten. Anstatt auf Spätschäden mit palliativen Therapieansätzen zu reagieren, könnten degenerative Schädigungen des Gelenkknorpels bereits früher erkannt und dem Krankheitsstadium angemessen behandelt werden. Außerdem könnte die Effizienz verschiedener operativer und konservativer Therapieverfahren im Verlauf beurteilt werden.

Die vorliegende Arbeit gibt eine Übersicht über die Technik und Anwendung des molekularen MRT-Verfahrens „delayed Gadolinium Enhanced MRI of Cartilage“ (dGEMRIC) am Hüftgelenk. Es wird deutlich, dass dGEMRIC qualitativ eine höhere Sensitivität gegenüber früharthrotischen Veränderungen als nativröntgenologische Aufnahmen besitzt und ein sinnvolles Verfahren zur In-vivo-Beurteilung der Knorpelqualität am Hüftgelenk ist.

Nach aktueller Datenlage besteht begründete Hoffnung, dGEMRIC klinisch zur Diagnostik von degenerativen Gelenkschäden sowie zur Verlaufsbeurteilung nach gelenkerhaltenden Therapieverfahren einzusetzen. Weitere klinische Studien müssen die Eignung dieses Verfahrens als zusätzliche Entscheidungshilfe und zur Planung osteo- und chondroplastischer Eingriffe evaluieren.

Abstract

Factors such as instability and impingement lead to early cartilage damage and osteoarthritis of the hip joint. The surgical outcome of joint-preserving surgery about the hip joint depends on the preoperative quality of joint cartilage.

For in vivo evaluation of cartilage quality, different biochemically sensitive magnetic resonance imaging (MRI) procedures have been tested, some of which have the potential of inducing a paradigm shift in the evaluation and treatment of cartilage damage and early osteoarthritis.

Instead of reacting to late sequelae in a palliative way, physicians could assess cartilage damage early on, and the treatment intensity could be adequate and based on the disease stage. Furthermore, the efficiency of different therapeutic interventions could be evaluated and monitored.

This article reviews the recent application of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and discusses its use for assessing cartilage quality in the hip joint. dGEMRIC is more sensitive to early cartilage changes in osteoarthritis than are radiographic measures and might be a helpful tool for assessing cartilage quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Williams A, Oppenheimer RA, Gray ML et al (2003) Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res Ther 5(2): 97–105

    Article  Google Scholar 

  2. Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36(2): 121–129

    Article  PubMed  CAS  Google Scholar 

  3. Maroudas A (ed) (1979) Physiochemical properties of articular cartilage. (Adult articular cartilage). Pitman Medical, London, pp 215–290

  4. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1): 36–41

    Article  PubMed  CAS  Google Scholar 

  5. Burstein D, Velyvis JH, Scott KT et al (2000) Protocol issues for delayed Gd(DTPA)2- enhanced MR imaging (dGEMRIC) for clinical evaluation of cartilage. Magn Reson Med 41: 857–865

    Google Scholar 

  6. Bashir A, Gray ML, Boutin RD et al (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205(2): 551–558

    PubMed  CAS  Google Scholar 

  7. Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36(5): 665–673

    Article  PubMed  CAS  Google Scholar 

  8. Bashir A, Gray ML, Hartke J et al (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41(5): 857–865

    Article  PubMed  CAS  Google Scholar 

  9. Bashir A, Gray ML, Burstein D (1998) Validation of Proteoglycan Measurements in Human Cartilage by MRI. In 44th Annual Meeting of the Orthopaedic Research Society, New Orleans, p 487

  10. Nieminen MT, Rieppo J, Silvennoinen J et al (2002) Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging. Magn Reson Med 48(4): 640–648

    Article  PubMed  CAS  Google Scholar 

  11. Henkelman RM, Stanisz GJ, Menezes N et al (2002) Can MTR be used to assess cartilage in the presence of Gd-DTPA2-? Magn Reson Med 48(6): 1081–1084

    Article  PubMed  CAS  Google Scholar 

  12. Gillis A, Gray M, Burstein D (2002) Relaxivity and diffusion of gadolinium agents in cartilage. Magn Reson Med 48(6): 1068–1071

    Article  PubMed  CAS  Google Scholar 

  13. Tiderius C, Hori M, Williams A et al (2006) dGEMRIC as a function of BMI. Osteoarthritis Cartilage 14(11): 1091–1097

    Article  PubMed  CAS  Google Scholar 

  14. Tiderius CJ, Jessel R, Kim YJ et al (2007) Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med 57(4): 803–805

    Article  PubMed  Google Scholar 

  15. Tiderius CJ, Svensson J, Leander P et al (2004) dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 51(2): 286–290

    Article  PubMed  Google Scholar 

  16. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52(11): 3507–3514

    Article  PubMed  CAS  Google Scholar 

  17. Ericsson YB, Tjornstrand J, Tiderius CJ et al (2009) Relationship between cartilage glycosaminoglycan content (assessed with dGEMRIC) and OA risk factors in meniscectomized patients. Osteoarthritis Cartilage 17(5): 559–564

    Article  Google Scholar 

  18. Williams A, Gillis A, McKenzie C et al (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol 182(1): 167–172

    Google Scholar 

  19. Samosky JT, Burstein D, Eric Grimson W et al (2005) Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res 23(1): 93–101

    Article  PubMed  CAS  Google Scholar 

  20. Baldassarri M, Goodwin JS, Farley ML et al (2007) Relationship between cartilage stiffness and dGEMRIC index: correlation and prediction. J Orthop Res 25(7): 904–912

    Article  PubMed  Google Scholar 

  21. Tiderius CJ, Olsson LE, Leander P et al (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49(3): 488–492

    Article  PubMed  Google Scholar 

  22. Young AA, Stanwell P, Williams A et al (2005) Glycosaminoglycan Content of Knee Cartilage Following Posterior Cruciate Ligament Rupture Demonstrated by Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) A Case Report. J Bone Joint Surg Am 87(12): 2763–2767

    Article  PubMed  Google Scholar 

  23. Tiderius CJ, Olsson LE, Nyquist F et al (2005) Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum 52(1): 120–127

    Article  PubMed  CAS  Google Scholar 

  24. Owman H, Tiderius CJ, Neuman P et al (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58(6): 1727–1730

    Article  PubMed  Google Scholar 

  25. Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: Preliminary results. J Magn Reson Imaging 26(4): 974–982

    Article  PubMed  Google Scholar 

  26. Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18(6): 1251–1259

    Article  PubMed  Google Scholar 

  27. Trattnig S, Millington SA, Szomolanyi P et al (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17(1): 103–118

    Article  PubMed  CAS  Google Scholar 

  28. Trattnig S, Mlynarik V, Breitenseher M et al (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17(4): 577–583

    Article  PubMed  CAS  Google Scholar 

  29. Trattnig S, Mlynarik V, Huber M et al (2000) Magnetic resonance imaging of articular cartilage and evaluation of cartilage disease. Invest Radiol 35(10): 595–601

    Article  PubMed  CAS  Google Scholar 

  30. Domayer SE, Welsch GH, Nehrer S et al (2009) T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: Preliminary results. Eur J Radiol (im Druck)

  31. Zalewski T, Lubiatowski P, Jaroszewski J et al (2008) Scaffold-aided repair of articular cartilage studied by MRI. Magma, Zürich

  32. Williams A, Shetty SK, Burstein D et al (2008) Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal (1CMC) joint: a feasibility study. Osteoarthritis Cartilage 16(4): 530–532

    Article  PubMed  CAS  Google Scholar 

  33. Welsch GH, Mamisch TC, Hughes T et al (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 43(9): 619–626

    Article  PubMed  Google Scholar 

  34. Saadat E, Jobke B, Chu B et al (2008) Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol 18(10): 2292–2302

    Article  PubMed  Google Scholar 

  35. Felson DT (2004) An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am 42(1): 1–9

    Article  PubMed  Google Scholar 

  36. Jäger M, Westhoff B, Zilkens C et al (2008) Indications and results of corrective pelvic osteotomies in developmental dysplasia of the hip. Orthopade 37(6): 556–570

    Article  PubMed  Google Scholar 

  37. Ganz R, Gill TJ, Gautier E et al (2001) Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg Br 83(8): 1119–1124

    Article  PubMed  CAS  Google Scholar 

  38. Guanche CA, Bare AA (2006) Arthroscopic Treatment of Femoroacetabular Impingement. Arthroscopy 22(1): 95–106

    Article  PubMed  Google Scholar 

  39. Ganz R, Parvizi J, Beck M et al (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417: 112–120

    PubMed  Google Scholar 

  40. Murphy S, Tannast M, Kim YJ et al (2004) Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results. Clin Orthop Relat Res 429: 178–181

    Article  PubMed  Google Scholar 

  41. Trousdale RT, Ekkernkamp A, Ganz R et al (1995) Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. J Bone Joint Surg Am 77(1): 73–85

    PubMed  CAS  Google Scholar 

  42. Trumble SJ, Mayo KA, Mast JW (1999) The periacetabular osteotomy. Minimum 2 year followup in more than 100 hips. Clin Orthop Relat Res 363: 54–63

    Article  PubMed  Google Scholar 

  43. Burstein D, Bashir A, Gray ML (2000) MRI techniques in early stages of cartilage disease. Invest Radiol 35(10): 622–638

    Article  PubMed  CAS  Google Scholar 

  44. Wiberg G (1939) Studies on dysplastic acetabula and congenital sublaxation of the hip joint. Acta Chir Scand 58(Suppl): 5–135

    Google Scholar 

  45. Murphy SB, Ganz R, Muller ME (1995) The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am 77(7): 985–989

    PubMed  CAS  Google Scholar 

  46. Faciszewski T, Coleman SS, Biddulph G (1993) Triple innominate osteotomy for acetabular dysplasia. J Pediatr Orthop 13(4): 426–430

    PubMed  CAS  Google Scholar 

  47. Guille JT, Forlin E, Kumar SJ et al (1992) Triple Osteotomy of the Innominate Bone in Treatment of Developmental Dysplasia of the Hip. J Pediatr Orthop 12: 718–721

    PubMed  CAS  Google Scholar 

  48. Kleuver M, Kooijman MAP, Pavlov PW et al (1997) Triple Osteotomy of the Pelvis for Acetabular Dysplasia. J Bone Joint Surg Br 79(2): 225–229

    Article  PubMed  Google Scholar 

  49. McCarthy JJ, Fox JS, Gurd AR (1996) Innominate Osteotomy in Adolescents and Adults Who have Acetabular Dysplasia. J Bone Joint Surg Am 78: 1455–1461

    PubMed  CAS  Google Scholar 

  50. Salter RB, Hansson G, Thompson GH (1984) Innominate Osteotomy in the Management of Residual Congenital Subluxation of the Hip in Young Adults. Clin Orthop Relat Res 182: 53–68

    PubMed  Google Scholar 

  51. Bellamy N, Buchanan WW, Goldsmith CH et al (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12): 1833–1840

    PubMed  CAS  Google Scholar 

  52. Rovati LC (1999) Radiographic assessment. Introduction: existing methodology. Osteoarthritis Cartilage 7(4): 427–429

    Article  PubMed  CAS  Google Scholar 

  53. Clohisy JC, Carlisle JC, Trousdale R et al (2009) Radiographic Evaluation of the Hip has Limited Reliability. Clin Orthop Relat Res 467(3): 666–675

    Article  PubMed  Google Scholar 

  54. Clohisy JC, Carlisle JC, Beaule PE et al (2008) A systematic approach to the plain radiographic evaluation of the young adult hip. J Bone Joint Surg Am 90(Suppl 4): 47–66

    Article  PubMed  Google Scholar 

  55. Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85(10): 1987–1992

    Article  PubMed  Google Scholar 

  56. Cunningham T, Jessel R, Zurakowski D et al (2006) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am 88(7): 1540–1548

    Article  PubMed  Google Scholar 

  57. Kim YJ (2008) Nonarthroplasty hip surgery for early osteoarthritis. Rheum Dis Clin North Am 34(3): 803–814

    Article  PubMed  Google Scholar 

  58. Jessel R, Zurakowski D, Zilkens C et al (2009) Radiographic and patient factors associated with pre-radiographic osteoarthritis in hip dysplasia. J Bone Joint Surg Am 91(5): 1120-1129

    Article  PubMed  Google Scholar 

  59. Leunig M, Beck M, Dora C et al (2006) Femoroacetabular impingement: Trigger for the development of osteoarthritis. Orthopade 35: 85–93

    Article  Google Scholar 

  60. Dora C, Zurbach J, Hersche O et al (2000) Pathomorphologic characteristics of posttraumatic acetabular dysplasia. J Orthop Trauma 14(7): 483–489

    Article  PubMed  CAS  Google Scholar 

  61. Reynolds D, Lucas J, Klaue K (1999) Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br 81(2): 281–288

    Article  PubMed  CAS  Google Scholar 

  62. Dora C, Mascard E, Mladenov K et al (2002) Retroversion of the acetabular dome after Salter and triple pelvic osteotomy for congenital dislocation of the hip. J Pediatr Orthop B 11(1): 34–40

    Article  PubMed  Google Scholar 

  63. Beck M, Kalhor M, Leunig M et al (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87(7): 1012–1018

    Article  PubMed  CAS  Google Scholar 

  64. Jessel R, Zilkens C, Tiderius C et al (2009) Assessment of osteoarthritis in hips with femoroacetabular impingement using delayed gadolinium enhanced MRI of cartilage. J Magn Reson Imaging (im Druck)

  65. Bittersohl B, Hosalka H, Hughes T et al (2009) Feasibility of T2*-mapping for the evaluation of hip joint cartilage at 1.5T using a three-dimensional, gradient-echo sequence: A prospective study. Magn Reson Imaging (im Druck)

  66. Mamisch TC, Dudda M, Hughes T et al (2008) Comparison of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) using inversion recovery and fast T1 mapping sequences. Magn Reson Med 60(4): 768–773

    Article  PubMed  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zilkens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilkens, C., Jäger, M., Bittersohl, B. et al. „Delayed Gadolinium Enhanced MRI of Cartilage“ (dGEMRIC). Orthopäde 38, 591–599 (2009). https://doi.org/10.1007/s00132-009-1441-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1441-7

Schlüsselwörter

Keywords

Navigation