Advertisement

Der Orthopäde

, Volume 38, Issue 6, pp 501–510 | Cite as

Kristallarthropathien

  • M. FuerstEmail author
  • J. Haybaeck
  • J. Zustin
  • W. Rüther
Leitthema

Zusammenfassung

Basische Calciumphosphate (BCP) und Calciumpyrophosphatdihydrat (CPPD) sind die häufigsten pathologischen intraartikulären Kristalle, gefolgt von Mononatriumuratkristallen (MNU) und, in sehr seltenen Fällen, Calciumoxalatkristallen. Diese Kristalle sind die Ursache äußerst unterschiedlicher rheumatischer Gelenkpathologien. Sie sind in unterschiedlichem Maße verantwortlich für akute oder chronische Gelenkentzündungen, Knorpelschädigungen und Knochenerosionen. Obwohl die molekularen Mechanismen, die zu einer kristallinduzierten Gelenkzerstörung führen immer besser verstanden werden, ist die genaue Rolle der Kristalle (insbesondere der BCP) nicht vollständig geklärt. Die klinische und pathologische Bedeutung der BCP bei Arthrose ist unbekannt. Diese Arbeit soll einen Überblick über die unterschiedlichen klinischen und pathologischen Aspekte der unterschiedlichen Kristalle liefern.

Schlüsselwörter

CPPD BCP Gicht Oxalose Arthritis 

Crystal arthropathies

Abstract

Basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate crystals are the most common types of pathologic crystals, followed by monosodium urate crystals and, in rare cases, calcium oxalate crystals. These crystals have been associated with a variety of quite different rheumatic syndromes. They are responsible for acute synovial inflammation and also contribute to cartilage degradation and bone lesions within the joint. Although understanding of the molecular mechanisms involved in generating the pathologic effects of these crystals has increased, the role of BCP crystals in particular remains poorly understood. The clinical implication of articular deposits of calcium-containing crystals in osteoarthritis is unknown. This review provides an overview of the clinical and pathological changes of these four different types of crystals.

Keywords

CPPD BCP Gout Oxalosis Arthritis 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Ryan LM, McCarthy DJ (1997) Calcium pyrophosphate crystal deposition disease, pseudogout and articular chondrocalcinosis. In: Koopman WJ (ed) Arthritis and allied conditions, 13th edn. Wiliams & Wilkins, Baltimore, pp 2103–2105Google Scholar
  2. 2.
    Nalbant S, Martinez JA, Kitumnaypong T et al (2003) Synovial fluid features and their relations to osteoarthritis severity: New findings from sequential studies. Osteoarthritis Cartilage 11: 50–54PubMedCrossRefGoogle Scholar
  3. 3.
    Gajjeraman S, Narayanan K, Hao J et al (2007) Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem 12(282): 1193–1204Google Scholar
  4. 4.
    Derfus BA, Kurian JB, Butler JJ et al (2002) The high prevalence of pathologic calcium crystals in preoperative knees. J Rheumatol 29: 570–573PubMedGoogle Scholar
  5. 5.
    Yavorskyy A, Hernandez-Santana A, McCarthy G, McMahon G (2008) Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis-analytical approaches and challenges. Analyst 133: 302–318PubMedCrossRefGoogle Scholar
  6. 6.
    Thouverey C, Beckhoff G, Pikula S, Buchet R (2008) Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dyhydrate mineral deposition by matrx vesicles. Osteoarthritis Cartilage (Epub ahead of print)Google Scholar
  7. 7.
    Derfus B, Kranendonk S, Camacho N et al (1998) Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int 63: 258–262PubMedCrossRefGoogle Scholar
  8. 8.
    Derfus BA, Kurtin SM, Camacho NP et al (1996) Comparison of matrix vesicles derived from normal and osteoarthritic human articular cartilage. Connect Tissue Res 35: 337–342PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson K, Terkeltaub R (2004) Upregulated ank expression in osteoarthritis can promote both chondrocyte mmp-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthritis Cartilage 12: 321–335PubMedCrossRefGoogle Scholar
  10. 10.
    Williams CJ, Zhang Y, Timms A et al (2002) Autosomal dominant family calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembran protein ANKH. Am J Hum Genet 71: 985–951PubMedCrossRefGoogle Scholar
  11. 11.
    Hirose J, Lawrence MR, Masuda I (2002) Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 46: 3218–3229PubMedCrossRefGoogle Scholar
  12. 12.
    Kroesen S, Schmid W, Theiler R (2000) Induction of an accut attack of calcium pyrophosphat dihydrate arthritis by intraacticular injection of hylan G-F 20 (Synvisc). Clin Rheum 19: 147–149CrossRefGoogle Scholar
  13. 13.
    Cheung HS, Kurup IV, Sallis JD, Ryan LM (1999) Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 42(3): 555–560Google Scholar
  14. 14.
    Doherty M, Diepe PA (1988) Clinical aspect of calciumpyrophosphate dihydrate deposition. Rheum Dis Clin North Am 14: 395–414PubMedGoogle Scholar
  15. 15.
    Ellman MH, Becker MA (2006) Crystal-inducd arthropathies: Recent investigative advances. Curr Opin Rheumatol 18: 249–255PubMedCrossRefGoogle Scholar
  16. 16.
    Wallace KL, Riedel AA, Joseph-Ridge N, Wortmann R (2004) Increasing prevalence of gout and hyperuricemia over 10 years among old adults in a managed care population. J Rheumatol 31: 1582–1587PubMedGoogle Scholar
  17. 17.
    Mikuls TR, Farrar JT, Bilker WB (2005) Gout epidemiology: Results from the UK General Practise Research Database, 1990–1999. Ann Rheum Dis 64: 267–272PubMedCrossRefGoogle Scholar
  18. 18.
    Krishnan E, Kwoh CK, Schumacher HR, Kuller L (2007) Hyperuricemia and incidence of hypertension in men without metabolic syndrome. Hypertension 49: 298–303PubMedCrossRefGoogle Scholar
  19. 19.
    Choi HK, Ford ES (2007) Prevalence of metabolic syndrome in individuals with hyperuricemia. Am J Med 120: 442–447PubMedCrossRefGoogle Scholar
  20. 20.
    Liu-Bryan R, Scott P, Sydlaske A et al (2005) Innate immunity conferred by Toll-like receptor 2 and 4 myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthrits Rheum 52: 2936–2946CrossRefGoogle Scholar
  21. 21.
    Martinon F, Petrilli V, Mayor A et al (2006) Gout associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241PubMedCrossRefGoogle Scholar
  22. 22.
    So A, Desmedt T, Revaz S, Tschopp J (n d) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9: 28Google Scholar
  23. 23.
    Verbruggen LA, Bourgain C, Verbeelen D (1989) Late presentation and microcrystalline arthropathy in primary hyperoxaluria. Clin Exp Rheumatol 7(6): 631–633PubMedGoogle Scholar
  24. 24.
    Maldonado I, Prasad V, Reginato AJ (2002) Oxalate crystal deposition disease. Curr Rheumatol Rep 4(3): 257–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Lehrstuhl für Orthopädie, Klinikum Bad BramstedtUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  2. 2.Institut für NeuropathologieUniversitätsspitalZürichSchweiz
  3. 3.Diagnostikzentrum, Institut für PathologieUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations