Advertisement

Der Orthopäde

, Volume 38, Issue 6, pp 531–538 | Cite as

Molekularpathologische Diagnostik von Gelenkinfektionen

  • J. KriegsmannEmail author
  • T. Hopf
  • D. Jacobs
  • N. Arens
  • V. Krenn
  • R. Schmitt-Wiedhoff
  • M. Kriegsmann
  • C. Heisel
  • C. Biehl
  • H. Thabe
  • R.P.H. Schmitz
  • M. Lehmann
  • M. Otto
Leitthema

Zusammenfassung

Die Diagnostik von Infektionen bei Patienten mit Arthritis und/oder Gelenkprothesen erfordert eine interdisziplinäre Zusammenarbeit unter Einsatz modernster Methoden. Massive bakterielle Gelenkinfektionen können mittels Kultur diagnostiziert werden. Die molekularpathologische Diagnostik ermöglicht die Detektion von Low-grade-Infektionen nach spezifischer Anreicherung bakterieller und fungaler DNA, Amplifizierung und Identifizierung der Erreger-DNA durch Gelelektrophorese, Sequenzierung oder Chiptechnologien.

Reaktive Arthritiden können unter Kenntnis der Anamnese (enterale oder urogenitale Infektion), Klinik (Oligoarthritis) und weiterer Parameter (HLA B27 etc.) von anderen Arthritiden abgegrenzt werden. Molekulare Methoden erlauben in zahlreichen Fällen eine Detektion der Erreger-DNA oder -RNA in der Synovialflüssigkeit oder im Gewebe. Von besonderem Interesse ist die molekularpathologische Differenzialdiagnose granulomatöser Synovialitiden innerhalb kürzester Zeit ohne vorausgehende Bakterienkultur. Die Weiterentwicklung molekularbiologischer Techniken zur Detektion bakterieller und fungaler DNA- und RNA-Spezies im Gewebe wird die Sensitivität und Geschwindigkeit der Infektionsdiagnostik weiter erhöhen.

Schlüsselwörter

Gelenkinfektionen Reaktive Arthritis PCR Chiptechnologie Molekularpathologie 

Applications of molecular pathology in the diagnosis of joint infections

Abstract

The diagnosis of infections in patients with arthritis and/or joint prostheses requires interdisciplinary cooperation and the use of up-to-date methods. Massive bacterial infection can be identified by bacterial culture, and minimal infection can be detected by molecular pathological methods. These processes include specific enrichment of bacterial and fungal DNA, amplification, and identification of the DNA by gel electrophoresis, sequencing techniques, and chip technologies.

Anamnesis (enteral or urogenital infection), the clinical picture (oligoarthritis), and further parameters (e.g., HLA B27 status) are important for the diagnosis of reactive arthritis. In many cases of reactive arthritis, molecular methods allow detection of bacterial DNA or RNA in synovial fluid or tissue. Molecular pathological methods allow the fast and reliable differential diagnosis of granulomatous synovialitis without prior cultivation of bacteria or fungi. The development of new molecular pathological methods for detecting bacterial and fungal nucleic acids will increase diagnostic accuracy.

Keywords

Joint infection Reactive arthritis PCR Chip technology Molecular pathology 

Notes

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Die Molekularpathologie Trier (Prof. Dr. Dr. Kriegsmann, PD Dr. Otto, Dr. Arens) ist Referenzlabor der SIRS-Lab, Jena. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Literatur

  1. 1.
    Arya SC, Agarwal N, Agarwal S (2004) Use of polymerase chain reaction to diagnose tubercular arthritis from joint tissues and synovial fluid. Arch Pathol Lab Med 128: 1326–1327PubMedGoogle Scholar
  2. 2.
    Bauer TW, Parvizi J, Kobayashi N, Krebs V (2006) Diagnosis of periprosthetic infection. J Bone Joint Surg Am 88: 869–882PubMedCrossRefGoogle Scholar
  3. 3.
    Birmingham P, Helm JM, Manner PA, Tuan RS (2008) Simulated joint infection assessment by rapid detection of life bacteria with real-time reverse transcription polymerase chain reaction. J Bone Joint Surg Ann 90: 602–608CrossRefGoogle Scholar
  4. 4.
    Chen T, Rimpiläinen M, Luukkainen R et al (2003) Bacterial components in the synovial tissue of patients with advanced rheumatoid arthritis or osteoarthritis: Analysis with gas chromatography-mass spectrometry and pan-bacterial polymerase chain reaction. Arthr Rheum 49: 328–334CrossRefGoogle Scholar
  5. 5.
    Chopra N, Kirschenbaum AE, Widman D (2002) Mycobacterium marinum tenosynovitis in a patient on etanercept therapy for rheumatoid arthritis. J Clin Rheumatol 8: 265–268PubMedCrossRefGoogle Scholar
  6. 6.
    Clarke MT, Roberts CP, Lee PT et al (2004) Polymerase chain reaction can detect bacterial DNA in aseptically loose total hip arthroplasties. Clin Orthop Relat Res 427: 132–137PubMedCrossRefGoogle Scholar
  7. 7.
    Coutlakis PJ, Roberts WN, Wise CM (2000) Another look at synovial fluid leukocytosis and infection. J Clin Rheumatol 8: 67–71CrossRefGoogle Scholar
  8. 8.
    Cuchacovich R, Japa S, Huang WQ et al (2002) Detection of bacterial DNA in Latin American patients with reactive arthritis by polymerase chain reaction and sequencing analysis. J Rheumatol 29: 1426–1429PubMedGoogle Scholar
  9. 9.
    Fenollar F, Veronique R, Andreas S et al (2006) Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J Clin Microbiol 44: 1018–1028PubMedCrossRefGoogle Scholar
  10. 10.
    Gallo J, Kolar M, Dendis M et al (2008) Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. New Microbiol 31: 97–104PubMedGoogle Scholar
  11. 11.
    Gerard HC, Schumacher HR, El-Gabalawy H et al (2000) Chlamydia pneumoniae present in the human synovium are viable and metabolically active. Microbiol Pathog 29: 17–24CrossRefGoogle Scholar
  12. 12.
    Gray J, Marsh PJ, Walker DJ (1994) A search for bacterial DNA in RA synovial fluid using polymer chain reaction. Br J Rheumatol 33: 997–998PubMedCrossRefGoogle Scholar
  13. 13.
    Gupta MN, Sturrock RD, Field M (2003) Prospective comparative study of patients with culture proven and high suspicion of adult onset septic arthritis. Ann Rheum Dis 62: 327–331PubMedCrossRefGoogle Scholar
  14. 14.
    Hamilton H, Jamieson J (2008) Deep infection in total hip arthroplasty. Can J Surg 51: 111–117PubMedGoogle Scholar
  15. 15.
    Inman RD, Whittum-Hudson JA, Schumacher HR, Hudson AP (2000) Chlamydia and associated arthritis. Curr Opin Rheumatol 12: 254–262PubMedCrossRefGoogle Scholar
  16. 16.
    Ivacic L, Reed KD, Mitchell PD, Ghebranious N (2007) A LightCycler TaqMan assay for detection of Borrelia burgdorferi sensu lato in clinical samples. Diagn Microbiol Infect Dis 57: 137–143PubMedCrossRefGoogle Scholar
  17. 17.
    Jalava J, Skurnik M, Toivanen A et al (2001) Bacterial PCR in the diagnosis of joint infection. Ann Rheum Dis 60: 287–289PubMedCrossRefGoogle Scholar
  18. 18.
    Kaandorp CJ, Krijnen P, Moens JH et al (1997) The outcome of bacterial arthritis: A prospective community-based study. Arthr Rheum 40: 884–892CrossRefGoogle Scholar
  19. 19.
    Kempsell KE, Cox CJ, Hurle M et al (2000) Reverse transcriptase-PCR analysis of bacterial rRNA for detection and characterization of bacterial species in arthritis synovial tissue. Infect Immun 68: 6012–6026PubMedCrossRefGoogle Scholar
  20. 20.
    Kilgus DJ, Howe DJ, Strang A (2002) Results of periprosthetic hip and knee infections caused by resistent bacteria. Clin Orthop 404: 116–124PubMedCrossRefGoogle Scholar
  21. 21.
    Knobben BA, Engelsma Y, Neut D et al (2006) Intraoperative contamination influences wound discharge and periprosthetic infection. Clin Orthop Relat Res 452: 236–241PubMedCrossRefGoogle Scholar
  22. 22.
    Krenn V, Morawietz L, König B et al (2006) Low-grade-/high-grade synovitis: Synovitis-score as a gold standard? Orthopade 35: 853–859PubMedCrossRefGoogle Scholar
  23. 23.
    Lange U, Teichmann J (2003) Whipple arthritis: Diagnosis by molecular analysis of synovial fluid-current status of diagnosis and therapy. Rheumatol 42: 473–480Google Scholar
  24. 24.
    Mariani BD, Martin DS, Levine MJ et al (1996) PCR detection of bacterial infection in total knee arthroplasty. Clin Orthop 331: 11–22PubMedCrossRefGoogle Scholar
  25. 25.
    Margaretten M, Kohlwes J, Moore D, Bent S (2007) Does this patient have septic arthritis? JAMA 297: 1478–1488PubMedCrossRefGoogle Scholar
  26. 26.
    Muralidhar B, Rumore PM, Steinmann CR (1994) Use of polymerase chain reaction to study arthritis due to Neisseria gonorrhoeae. Arthr Rheum 37: 710–717CrossRefGoogle Scholar
  27. 27.
    Nikkari S, Puolakkainen M, Yli-Kertula U et al (1997) Ligase chain reaction in detection of chlamydia DNA in synovial fluid cells. Br J Rheumatol 36: 763–765PubMedCrossRefGoogle Scholar
  28. 28.
    Nikkari S, Merilahti-Palo R, Saario R et al (1992) Yersinia-triggered reactive arthritis. Use of polymerase chain reaction and immunocytochemical staining in the detection of bacterial components from synovial specimens. Arthr Rheum 35: 682–687CrossRefGoogle Scholar
  29. 29.
    Otto M (2008) Klassifikation der Protheseninsuffizienz und Partikelbestimmung. Pathologe 29(Suppl 2): 232–239PubMedCrossRefGoogle Scholar
  30. 30.
    Pandey R, Drakoulakis E, Athanasou NA (1999) An assessment of the histological criteria used to diagnose infection in hip revision arthroplasty tissues. J Clin Pathol 52: 118–123PubMedCrossRefGoogle Scholar
  31. 31.
    Panouis K, Grigoris P, Butcher I et al (2005) Poor predictive value of broad-range PCR for detection of arthroplasty infection in 92 cases. Acta Orthop 76: 341–346Google Scholar
  32. 32.
    Putschky N, Schnarr S, Wollenhaupt J et al (2001) Intra-articular co-infection by Borrelia burgdorferi and Chlamydia trachomatis. Ann Rheum Dis 60: 632–634PubMedCrossRefGoogle Scholar
  33. 33.
    Rosey A-L, Abachin E, Quesnes G et al (2007) Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J Microbiol Methods 68: 88–93PubMedCrossRefGoogle Scholar
  34. 34.
    Schnarr S, Putschky N, Jendro MC et al (2001) Chlamydia and Borrelia DNA in synovial fluid of patients with early undifferentiated oligoarthritis: Results of a prospective study. Arthr Rheum 44: 2679–2685CrossRefGoogle Scholar
  35. 35.
    Tarkin IS, Henry TJ, Fey PI et al (2003) PCR rapidly detects methicillin-resistent staphylococci periprosthetic infection. Clin Orthop Relat Res 414: 89–94PubMedCrossRefGoogle Scholar
  36. 36.
    Van der Heijden IM, Wilbrink B, Vije AEM et al (1999) Detection of bacterial DNA in serial synovial samples obtained during antibiotic treatment from patients with septic arthritis. Arthr Rheum 42: 2198–2203CrossRefGoogle Scholar
  37. 37.
    Van der Heijden IM, Wilbrink B, Tchetverikov I et al (2000) Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthr Rheum 43: 593–598CrossRefGoogle Scholar
  38. 38.
    Wilbrink B, van der Heijden I, Schouls LM et al (1998) Detection of bacterial DNA in joint samples from patients with undifferentiated arthritis and reactive arthritis, using polymerase chain reaction with universal 16S ribosomal primers. Arthr Rheum 41: 535–543CrossRefGoogle Scholar
  39. 39.
    Wilkinson NZ, Kingsley GH, Jones HW et al (1999) The detection of DNA from a range of bacterial species in the joints of patients with a variety of arthritides using a nested, broad-range polymerase chain reaction. Rheumatol 38: 260–266CrossRefGoogle Scholar
  40. 40.
    Wodtke J, Löhr JF (2008) Das infizierte Implantat. Orthopade 37: 257–269PubMedCrossRefGoogle Scholar
  41. 41.
    Yang S, Ramachandran P, Hardick A et al (2008) Rapid PCR-based diagnosis of septic arthritis by early gram-type classification and pathogen identification. J Clin Microbiol 46: 1386–1390PubMedCrossRefGoogle Scholar
  42. 42.
    Zalavras CG, Dellamaggiora R, Patzakis MJ et al (2006) Septic arthritis in patients with human immunodeficiency virus. Clin Orthop Relat Res 451: 46–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • J. Kriegsmann
    • 1
    • 2
    Email author
  • T. Hopf
    • 3
  • D. Jacobs
    • 3
  • N. Arens
    • 2
  • V. Krenn
    • 1
  • R. Schmitt-Wiedhoff
    • 4
  • M. Kriegsmann
    • 1
  • C. Heisel
    • 4
  • C. Biehl
    • 5
  • H. Thabe
    • 5
  • R.P.H. Schmitz
    • 6
  • M. Lehmann
    • 6
  • M. Otto
    • 1
    • 2
  1. 1.Zentrum für Histologie, Zytologie und Molekulare DiagnostikTrierDeutschland
  2. 2.MolekularpathologieTrierDeutschland
  3. 3.Abteilung OrthopädieKrankenhaus der Barmherzigen BrüderTrierDeutschland
  4. 4.Arcus SportklinikPforzheimDeutschland
  5. 5.Abteilung OrthopädieDiakonie-KrankenhausBad KreuznachDeutschland
  6. 6.SIRS-LabJenaDeutschland

Personalised recommendations