Skip to main content

Advertisement

Log in

Sprunggelenkchondrozyten besitzen eine höhere Interleukin-1-Resistenz als Kniegelenkchondrozyten

Ankle chondrocytes are more resistant to Interleukin-1 than chondrocytes derived from the knee

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Inzidenz degenerativer Veränderungen und Osteoarthritis ist im Sprunggelenk geringer als im Kniegelenk. Dies kann nicht ausschließlich mit Unterschieden in der Anatomie und den biomechanischen Eigenschaften dieser beiden Gelenke erklärt werden. Frühere Untersuchungen zeigten Unterschiede in der biochemischen Zusammensetzung der extrazellulären Matrix des Gelenkknorpels von Knie- und Sprunggelenk. Das Ziel der vorliegenden Studie war die Identifikation möglicher metabolischer Unterschiede von Knie- und Sprunggelenkchondrozyten an isolierten Zellen, um die sekundären Effekte der vorhandenen extrazellulären Matrix von der primären matrixunabhängigen zellulären Differenzierung zu unterscheiden.

Methoden

Isolierte Chondrozyten des Knie- und Sprunggelenks humaner Spender wurden in Alginatkügelchen kultiviert und mit dem katabolen Zytokin Interleukin-1 (IL-1) als Modell einer entzündlichen Episode inkubiert. Der Proteoglykan- (PG-)Stoffwechsel wurde über die 35S-Inkorporation in Glykosaminoglykane (GAG) analysiert.

Ergebnisse

Die Gegenwart von IL-1 induzierte eine Inhibition der PG-Synthese des Knie- und Sprunggelenkknorpels. Dabei war die 50%-Hemmkonzentration (IC50) von IL-1 für das Kniegelenk ca. 5fach geringer als für das Sprunggelenk.

Schlussfolgerung

Sprunggelenkchondrozyten besitzen eine höhere IL-1-Resistenz als Kniegelenkchondrozyten.

Abstract

Background

The incidence of degenerative changes and osteoarthritis is lower in the ankle than in the knee joints. This cannot be explained exclusively with differences in anatomy and biomechanical properties of these two synovial joints. Previous studies have indicated distinct differences in the biochemical composition of the extracellular matrix of articular cartilage from knee and ankle joints. The aim of this study was to identify potential metabolic differences between knee and ankle joint chondrocytes using isolated cells to distinguish the secondary effects of the resident extracellular matrix from the primary matrix-independent effects of cellular differentiation.

Method

Isolated knee and ankle chondrocytes from the same human donor were cultured in alginate beads and subsequently exposed to a three-day pulse of the catabolic cytokine interleukin-1 (IL-1) as a model of an inflammatory episode. The metabolism of proteoglycans (PG’s) was analyzed as expressed changes in 35S-sulfate incorporation into glycosaminoglycans (GAG’s).

Results

The presence of IL-1 induced an inhibition of PG synthesis in knee and ankle articular chondrocytes. The 50% inhibitory concentration (IC50) of IL-1 was about 5 times lower for knee than for ankle chondrocytes.

Conclusion

Ankle chondrocytes are more resistant to IL-1 induced inhibition of PG synthesis than chondrocytes from the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aydelotte MB, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes, I: Morphology and cartilage matrix production. Conn Tissue Res 18: 205–222

    Google Scholar 

  2. Benton HP, Tyler JA (1988) Inhibition of cartilage proteoglycan synthesis by interleukin 1. Biochem Biophys Res Commun 154: 421–428

    Article  PubMed  Google Scholar 

  3. Campbell MA, Handley CJ, Hascall VC et al. (1984) Turnover of proteoglycans in articular-cartilage cultures. Characterization of proteoglycans released into the medium. Arch Biochem Biophys 234: 275–289

    Article  PubMed  Google Scholar 

  4. Cole AA, Margulis A, Kuettner KE (2003) Distinguishing ankle and knee articular cartilage. Foot Ankle Clin 8(2): 305–316

    Article  PubMed  Google Scholar 

  5. Dang Y, Cole AA, Homandberg GA (2003) Comparison of the catabolic effects of fibronectin fragments in human knee and ankle cartilages. Osteoarthritis Cartilage 11(7): 538–547

    Article  PubMed  Google Scholar 

  6. Eger W, Schumacher BL, Mollenhauer J et al. (2002) Human knee and ankle cartilage explants: catabolic differences. J Orthop Res 20: 24–32

    Article  Google Scholar 

  7. Felson DT, Naimark A, Anderson J et al. (1987) The prevalence of knee osteoarthritis in the elderly: the Framingham Osteoarthritis Study. Arthritis Rheum 30: 914–918

    PubMed  Google Scholar 

  8. Flechtenmacher J, Huch K, Thonar EJ et al. (1996) Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis Rheum 39: 1896–1904

    PubMed  Google Scholar 

  9. Guo J, Jourdian GW, MacCallum DK (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Conn Tissue Res 19: 277–297

    Google Scholar 

  10. Hascall VC, Sandy J, Handley CJ (1994) Glycosaminoglycan sulfation in human osteoarthritis. In: Mow C, Ratcliff A (eds) Structure and function of articular cartilage. CRC Press, Boca Raton, FL

  11. Häuselmann HJ, Aydelotte MB, Schumacher BL et al. (1992) Synthesis and turnover of proteoglycans by human and bovine articular chondrocytes cultured in alginate beads. Matrix 12: 116–129

    PubMed  Google Scholar 

  12. Häuselmann HJ, Flechtenmacher J, Michal L et al. (1996) The superficial layer of human articular cartilage is more susceptible to interleukin-1-induced damage than the deep layers. Arthritis Rheum 39: 478–488

    PubMed  Google Scholar 

  13. Häuselmann HJ, Masuda K, Hunziker EB et al. (1996) Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am J Physiol 271: 742–752

    Google Scholar 

  14. Homandberg GA, Hui F, Wen C et al. (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321: 751–757

    PubMed  Google Scholar 

  15. Huch K, Wilbrink B, Flechtenmacher J et al. (1997) Effects of recombinant human osteogenetic protein 1 on the production of proteoglycan, prostaglandin E2, and interleukin-1 receptor antagonist by human articular chondrocytes cultured in the presence of Interleukin-1β. Arthritis Rheum 40: 2157–2161

    PubMed  Google Scholar 

  16. Hunziker EB (1999) Biologic repair of articular cartilage. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (Hrsg) Articular cartilage and osteoarthritis. Raven Press, New York, pp 183–199

  17. Ihn JC, Kim SJ, Park ICH (1993) In vitro study of contact area and pressure distribution in the human knee after partial and total menisectomy. Intern Orthop 17: 214–218

    Google Scholar 

  18. Kang Y, Koepp H, Cole AA et al. (1998) Cultured human ankle and knee cartilage differ in susceptibility to damage mediated by fibronectin fragments. J Orthop Res 16: 552–556

    Article  Google Scholar 

  19. Kimizuka M, Kurosawa H, Fukubayashi T (1980) Load-bearing pattern of the ankle joint. Arch Orthop Trauma Surg 96: 45–49

    Article  PubMed  Google Scholar 

  20. Kuettner KE, Pauli BU, Gall G et al. (1982) Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics and morphology. J Cell Biol 93: 743–750

    Article  PubMed  Google Scholar 

  21. Masuda K, Shirota H, Thonar EJ (1994) Quantification of 35S-labeled proteoglycans complexed to alcian blue by rapid filtration in multiwell plates. Anal Biochem 217: 167–175

    Article  PubMed  Google Scholar 

  22. Mok SS, Masuda K, Häuselmann H et al. (1994) Aggrecan synthesized by marure bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem 269(52): 33021–33027

    PubMed  Google Scholar 

  23. Petit B, Masuda K, D’Souza AL et al. (1996) Charakterization of crosslinked collagens synthesized by mature articular chondrocytes cultured in alginate beads: comparison of two distinct matrix compartments. Exp Cell Res 225: 151–161

    Article  PubMed  Google Scholar 

  24. Poole AR (1995) Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis. In: Kuettner KE, Goldberg VM (eds) Osteoarthritic disorders. Am Acad Orthop Surg, Rosemont, Ill, pp 247–260

  25. Sandy J (1992) Articular cartilage and osteoarthritis. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 21–33

  26. Smith JB, Bocchieri MH, Sherbin-Allen L et al. (1989) Occurrence of interleukin-1 in human synovial fluid: detection by RIA, bioassay and presence of bioassay inhibiting factors. Rheumatol Int 9: 53–56

    Article  PubMed  Google Scholar 

  27. Swann AC, Seedholm BB (1993) The stiffness of normal articular cartilage and the predominant acting stress levels: Implications for the aetiology of osteoarthrosis. Br J Rheum 32: 16–25

    Google Scholar 

  28. Treppo S, Koepp H, Quan EC et al. (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle. J Orthop Res 18: 739–748

    Article  PubMed  Google Scholar 

  29. Woessner JF (1995) Imbalance of proteinases and their inhibitors in osteoarthritis. In: Kuettner KE, Goldberg VM (eds) Osteoarthritis disorders. Am Acad Orthop Surg, Rosemont, Ill, pp 281–290

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aurich.

Additional information

Institution, an der die Untersuchung durchgeführt wurde: Department of Biochemistry, Rush Medical College at Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.

Finanzielle Unterstützung: Diese Arbeit wurde teilweise unterstützt durch Forschungsgelder des NIH (grants AR 39239, M.A., J.M., K.K., A.C.), einem Stipendium der „Max Kade Foundation“ (444USA-031/15/99, M.A.),der Deutschen Forschungsgemeinschaft (AU156/6-1, M.A.; MO980/1, JM), sowie einem Stipendium der Dr. Scholl Foundation (A.C.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurich, M., Eger, W., Rolauffs, B. et al. Sprunggelenkchondrozyten besitzen eine höhere Interleukin-1-Resistenz als Kniegelenkchondrozyten. Orthopäde 35, 784–790 (2006). https://doi.org/10.1007/s00132-006-0958-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-0958-2

Schlüsselwörter

Keywords

Navigation