Skip to main content

Advertisement

Log in

Der zementierte MS-30-Schaft

Ergebnisse einer Multi-surgeon-Serie von 333 konsekutiven Fällen

The cemented MS-30 stem

A multi-surgeon series of 333 consecutive cases

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bis jetzt existiert lediglich eine publizierte Langzeitstudie (peer reviewed) aus der Inauguratoren-Klinik für den zementierten MS-30-Schaft.

Material und Methoden

In dieser retrospektiven „Multi-surgeon-Studie“ wurden die ersten 333 konsekutiven MS-30-Schäfte nachuntersucht. Alle Patienten mit 5–11 Jahren Follow-up wurden klinisch und radiologisch evaluiert. Zum Zeitpunkt der Implantation wurden die Kriterien der modernen Zementiertechniken nicht konsequent umgesetzt. Zur klinischen Evaluation dienten der Harris-Hip-Score (HHS) sowie der Score nach Merle d‘Aubigné u. Postel. In der radiologischen Auswertung wurden die Qualität des Zementmantels in 2 Ebenen, Prothesennachsinken, Lockerungszeichen und Osteolysen beurteilt.

Ergebnisse

Zum Zeitpunkt der Nachuntersuchung waren 12 Schäfte revidiert – 3 aufgrund aseptischer Lockerung, 6 wegen Infektionen, 1 nach periprothetischer Fraktur und 2 aufgrund rezidivierender Luxationen. Die Überlebensrate nach 10 Jahren unabhängig vom Revisionsgrund lag bei 96,1%, für aseptische Lockerungen bei 99,0%. Der mediane HHS lag bei 80 (26–100) Punkten. Die radiologische Analyse ergab in fast zwei Drittel der Fälle einen dünnen Zementmantel (<2 mm), der hauptsächlich in den lateralen Aufnahmen (Gruen-Zone 8/9) manifest wurde. Ein Drittel der Prothesen zeigten radiologische Risikozeichen für eine spätere Lockerung, die eng mit der initialen Qualität des Zementmantels korrelierten.

Schlussfolgerung

Die mittelfristigen Ergebnisse mit dem MS-30-Schaft sind ermutigend und sollten mit einer modernen Zementiertechnik weiter verbessert werden können.

Abstract

Introduction

So far there is only one peer-reviewed long-term publication from the inventors’ clinic for the MS-30 stem.

Material and methods

In a retrospective study we followed the first 333 consecutive MS-30 stems. All patients with 5- to 11-year follow-up were clinically and radiographically evaluated. At the time of implantation the criteria of modern cementing techniques were not implemented. Clinical evaluation was done using the scores of Harris and Merle d’Aubigné and Postel. Radiographic evaluation included quality of the cement mantle (true lateral radiographs taken under fluoroscopy), stem subsidence, loosening signs, and the risk for pending failure.

Results

At follow-up 12 hips had undergone femoral revision: 3 for aseptic loosening, 6 for infection, 1 for periprosthetic fracture, and 2 for recurrent dislocation. The overall survival for all reasons at 10 years was 96.1%; survival with aseptic loosening as an end point was 99.0%. The median Harris Hip Score at follow-up was 80 (26–100) points. Radiological evaluation revealed a thin cement mantle (<2 mm) in approximately 2/3, predominantly on the lateral views (Gruen zones 8/9). One-third of all reviewed prostheses were considered at risk for pending failure, which strongly correlated with the initial quality of the cement mantle.

Conclusion

Midterm results with the MS-30 stem are encouraging and an even better long-term outcome can be expected with a better cement technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Barrack RL (2000) Early failure of modern cemented stems. J Arthroplasty 15(8): 1036–1050

    Article  PubMed  Google Scholar 

  2. Barrack RL, Mulroy RD Jr, Harris WH (1992) Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty. A 12-year radiographic review. J Bone Joint Surg Br 74(3): 385–389

    PubMed  Google Scholar 

  3. Beckenbaugh RD, Ilstrup DM (1978) Total hip arthroplasty. J Bone Joint Surg Am 60(3): 306–313

    PubMed  Google Scholar 

  4. Berli B, Elke R, Morscher EW (eds) (2003) The cemented MS-30 Stem in total hip replacement, matte versus polished surface: minimum of five years of clinical and radiographic results of a prospective study. West Conshohocken: ASTM International 100 Barr Harbour Drive

    Google Scholar 

  5. Berli BJ, Schafer D, Morscher EW (2005) Ten-year survival of the MS-30 matt-surfaced cemented stem. J Bone Joint Surg Br 87(7): 928–933

    Article  PubMed  Google Scholar 

  6. Bourne RB, Rorabeck CH (1999) Assessing the outcomes: what really works? Orthopedics 22(9): 823–825

    PubMed  Google Scholar 

  7. Breusch SJ (2005) The optimal cement mantle. In: Breusch SJ, Malchau H (eds) The well cemented total hip arthroplasty. In theory and practice. Springer, Berlin Heidelberg New York Tokio, S 125–140

  8. Breusch SJ, Lukoschek M, Kreutzer J et al. (2001) Dependency of cement mantle thickness on femoral stem design and centralizer. J Arthroplasty 16(5): 648–657

    Article  PubMed  Google Scholar 

  9. Britton A, Murray D, Bulstrode C et al. (1995) Loss to follow-up: does it matter? Lancet 345(8963): 1511–1512

    Article  Google Scholar 

  10. Britton AR, Murray DW, Bulstrode CJ et al. (1996) Long-term comparison of Charnley and Stanmore design total hip replacements. J Bone Joint Surg Br 78(5): 802–808

    PubMed  Google Scholar 

  11. Brooker AF, Bowerman JW, Robinson RA, Riley LH Jr (1973) Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am 55(8): 1629–1632

    PubMed  Google Scholar 

  12. Chambers IR, Fender D, McCaskie AW et al. (2001) Radiological features predictive of aseptic loosening in cemented Charnley femoral stems. J Bone Joint Surg Br 83(6): 838–842

    Article  PubMed  Google Scholar 

  13. Chang RW, Pellisier JM, Hazen GB (1996) A cost-effectiveness analysis of total hip arthroplasty for osteoarthritis of the hip. JAMA 275(11): 858–865

    Article  PubMed  Google Scholar 

  14. Charnley J (1972) The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg Br 54(1): 61–76

    PubMed  Google Scholar 

  15. Clohisy JC, Harris WH (1999) Primary hybrid total hip replacement, performed with insertion of the acetabular component without cement and a precoat femoral component with cement. An average ten-year follow-up study. J Bone Joint Surg Am 81(2): 247–255

    PubMed  Google Scholar 

  16. Dorey FJ, Korn EL (1987) Effective sample sizes for confidence intervals for survival probabilities. Stat Med 6(6): 679–687

    PubMed  Google Scholar 

  17. Dorr LD, Luckett M, Conaty JP (1990) Total hip arthroplasties in patients younger than 45 years. A nine to ten year follow-up study. Clin Orthop 260: 215–219

    PubMed  Google Scholar 

  18. Ebramzadeh E, Sarmiento A, McKellop HA et al. (1994) The cement mantle in total hip arthroplasty. Analysis of long-term radiographic results. J Bone Joint Surg Am 76(1): 77–87

    PubMed  Google Scholar 

  19. Faulkner A, Kennedy LG, Baxter K et al. (1998) Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model. Health Technol Assess 2(6): 1–133

    Google Scholar 

  20. Fowler JL, Gie GA, Lee AJ, Ling RS (1988) Experience with the Exeter total hip replacement since 1970. Orthop Clin North Am 19(3): 477–489

    PubMed  Google Scholar 

  21. Freeman MA, Plante-Bordeneuve P (1994) Early migration and late aseptic failure of proximal femoral prostheses. J Bone Joint Surg Br 76(3): 432–438

    PubMed  Google Scholar 

  22. Garellick G, Malchau H, Regner H, Herberts P (1999) The Charnley versus the Spectron hip prosthesis: radiographic evaluation of a randomized, prospective study of 2 different hip implants. J Arthroplasty 14(4): 414–425

    Article  PubMed  Google Scholar 

  23. Gruen TA, McNeice GM, Amstutz HC (1979) „Modes of failure“ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141: 17–27

    PubMed  Google Scholar 

  24. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51(4): 737–755

    PubMed  Google Scholar 

  25. Havelin LI, Engesaeter LB, Espehaug B et al. (2000) The Norwegian Arthroplasty Register: 11 years and 73,000 arthroplasties. Acta Orthop Scand 71(4): 337–353

    Article  PubMed  Google Scholar 

  26. Herberts P, Malchau H (2000) Long-term registration has improved the quality of hip replacement: a review of the Swedish THR Register comparing 160,000 cases. Acta Orthop Scand 71(2): 111–121

    Article  PubMed  Google Scholar 

  27. Howie DW, Middleton RG, Costi K (1998) Loosening of matt and polished cemented femoral stems. J Bone Joint Surg Br 80(4): 573–576

    Article  PubMed  Google Scholar 

  28. Iwaki H, Scott G, Freeman MA (2002) The natural history and significance of radiolucent lines at a cemented femoral interface. J Bone Joint Surg Br 84(4): 550–5555

    Article  PubMed  Google Scholar 

  29. Iwase T, Wingstrand I, Persson BM et al. (2002) The ScanHip total hip arthroplasty: radiographic assessment of 72 hips after 10 years. Acta Orthop Scand 73(1): 54–59

    Article  PubMed  Google Scholar 

  30. Jasty M, Maloney WJ, Bragdon CR et al. (1991) The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg Br 73(4): 551–558

    PubMed  Google Scholar 

  31. Johnston RC, Crowninshield RD (1983) Roentgenologic results of total hip arthroplasty. A ten-year follow-up study. Clin Orthop 181: 92–98

    PubMed  Google Scholar 

  32. Johnston RC, Fitzgerald RH Jr, Harris WH et al. (1990) Clinical and radiographic evaluation of total hip replacement. A standard system of terminology for reporting results. J Bone Joint Surg Am 72(2): 161–168

    PubMed  Google Scholar 

  33. Karrholm J, Borssen B, Lowenhielm G, Snorrason F (1994) Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br 76(6): 912–917

    PubMed  Google Scholar 

  34. Kobayashi A, Donnelly WJ, Scott G, Freeman MA (1997) Early radiological observations may predict the long-term survival of femoral hip prostheses. J Bone Joint Surg Br 79(4): 583–589

    Article  PubMed  Google Scholar 

  35. Krismer M, Biedermann R, Stockl B et al. (1999) The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J Bone Joint Surg Br 81(2): 273–280

    Article  PubMed  Google Scholar 

  36. Loudon JR, Charnley J. (1980) Subsidence of the femoral prosthesis in total hip replacement in relation to the design of the stem. J Bone Joint Surg Br 62(4): 450–453

    PubMed  Google Scholar 

  37. Malchau H (1996) Revision total hip arthroplasty. Failure mechanisms and outcomes. Orthopedics 19(9): 769–770

    PubMed  Google Scholar 

  38. Malchau H, Herberts P, Ahnfelt L (1993) Prognosis of total hip replacement in Sweden. Follow-up of 92,675 operations performed 1978–1990. Acta Orthop Scand 64(5): 497–506

    PubMed  Google Scholar 

  39. Malchau H, Herberts P, Eisler T et al. (2002) The Swedish Total Hip Replacement Register. J Bone Joint Surg Am 84(Suppl 2): 2–20

    PubMed  Google Scholar 

  40. Malchau H, Karrholm J, Wang YX, Herberts P (1995) Accuracy of migration analysis in hip arthroplasty. Digitized and conventional radiography, compared to radiostereometry in 51 patients. Acta Orthop Scand 66(5): 418–424

    PubMed  Google Scholar 

  41. Maloney WJ (2001) National Joint Replacement Registries: has the time come? J Bone Joint Surg Am 83(10): 1582–1585

    PubMed  Google Scholar 

  42. Maloney WJ, Jasty M, Rosenberg A, Harris WH (1990) Bone lysis in well-fixed cemented femoral components. J Bone Joint Surg Br 72(6): 966–970

    PubMed  Google Scholar 

  43. Marubini E, Valsecchi M (1995) Analysing survival data from clinical trial and observational studies. Wiley, Chichester

  44. Massoud SN, Hunter JB, Holdsworth BJ et al. (1997) Early femoral loosening in one design of cemented hip replacement. J Bone Joint Surg Br 79(4): 603–608

    Article  PubMed  Google Scholar 

  45. McCaskie AW, Brown AR, Thompson JR, Gregg PJ (1996) Radiological evaluation of the interfaces after cemented total hip replacement. Interobserver and intraobserver agreement. J Bone Joint Surg Br 78(2): 191–194

    PubMed  Google Scholar 

  46. Merle d’Aubigné R, Postel M (1954) Functional results of the hip arthroplasty with acrylic prosthesis. J Bone Joint Surg Am 36(3): 451–475

    PubMed  Google Scholar 

  47. Middleton RG, Howie DW, Costi K, Sharpe P (1998) Effects of design changes on cemented tapered femoral stem fixation. Clin Orthop 355: 47–56

    Article  PubMed  Google Scholar 

  48. Mohler CG, Callaghan JJ, Collis DK, Johnston RC (1995) Early loosening of the femoral component at the cement-prosthesis interface after total hip replacement. J Bone Joint Surg Am 77(9): 1315–1322

    PubMed  Google Scholar 

  49. Morscher EW, Wirz D (2002) Current state of cement fixation in THR. Acta Orthop Belg 68(1): 1–12

    PubMed  Google Scholar 

  50. Mulroy RD Jr, Harris WH (1990) The effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographic review. J Bone Joint Surg Br 72(5): 757–760

    PubMed  Google Scholar 

  51. Mulroy WF, Harris WH (1997) Acetabular and femoral fixation 15 years after cemented total hip surgery. Clin Orthop 337: 118–128

    PubMed  Google Scholar 

  52. Murray DW, Britton AR, Bulstrode CJ (1997) Loss to follow-up matters. J Bone Joint Surg Br 79(2): 254–257

    Article  PubMed  Google Scholar 

  53. Murray DW, Carr AJ, Bulstrode CJ (1995) Which primary total hip replacement? J Bone Joint Surg Br 77(4): 520–527

    PubMed  Google Scholar 

  54. Oishi CS, Walker RH, Colwell CW Jr (1994) The femoral component in total hip arthroplasty. Six to eight-year follow-up of one hundred consecutive patients after use of a third-generation cementing technique. J Bone Joint Surg Am 76(8): 1130–1136

    PubMed  Google Scholar 

  55. Ong A, Wong KL, Lai M et al. (2002) Early failure of precoated femoral components in primary total hip arthroplasty. J Bone Joint Surg Am 84(5): 786–792

    PubMed  Google Scholar 

  56. Owen TD, Moran CG, Smith SR, Pinder IM (1994) Results of uncemented porous-coated anatomic total hip replacement. J Bone Joint Surg Br 76(2): 258–262

    PubMed  Google Scholar 

  57. Puolakka TJ, Pajamaki KJ, Halonen PJ et al. (2001) The Finnish Arthroplasty Register: report of the hip register. Acta Orthop Scand 72(5): 433–441

    Article  PubMed  Google Scholar 

  58. Savilahti S, Myllyneva I, Lindholm TS et al. (1995) Clinical outcome and survival of Link RS total hip prosthesis. J Bone Joint Surg Br 77(3): 369–373

    PubMed  Google Scholar 

  59. Smith SW, Estok DM 2nd, Harris WH (1998) Total hip arthroplasty with use of second-generation cementing techniques. An eighteen-year-average follow-up study. J Bone Joint Surg Am 80(11): 1632–1640

    PubMed  Google Scholar 

  60. Sporer SM, Callaghan JJ, Olejniczak JP et al. (1999) The effects of surface roughness and polymethylmethacrylate precoating on the radiographic and clinical results of the Iowa hip prosthesis. A study of patients less than fifty years old. J Bone Joint Surg Am 81(4): 481–492

    Article  PubMed  Google Scholar 

  61. Spotorno L, Grappiolo G, Penenberg BL, Burastero G (2002) Eight to eleven year review of hybrid THA using a polished femoral stem and cementless Titanium acetabulum. AAOS, Dallas

  62. Verdonshot N (2005) Stem design philosophies. In: Breusch SJ, Malchau H (eds) The well cemented total hip arthroplasty. In theory and practice. Springer, Berlin Heidelberg New York Tokio, pp 168–179

  63. Williams HD, Browne G, Gie GA et al. (2002) The Exeter universal cemented femoral component at 8 to 12 years. A study of the first 325 hips. J Bone Joint Surg Br 84(3): 324–334

    Article  PubMed  Google Scholar 

  64. Woolson ST, Haber DF (1996) Primary total hip replacement with insertion of an acetabular component without cement and a femoral component with cement. Follow-up study at an average of six years. J Bone Joint Surg Am 78(5): 698–705

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Clauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauss, M., Reitzel, T., Pritsch, M. et al. Der zementierte MS-30-Schaft. Orthopäde 35, 776–783 (2006). https://doi.org/10.1007/s00132-006-0956-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-0956-4

Schlüsselwörter

Keywords

Navigation