Skip to main content

Advertisement

Log in

Interkorporelle Metallimplantate („Cages“) bei lumbalen Spondylodesen

Interbody metal implants (“cages”) for lumbar fusion

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Interkorporelle Metallimplantate haben im Rahmen von lumbalen Spondylodesen in den letzten 15 Jahren weltweite Verbreitung gefunden. Die sog. „Cages“ bestehen aus metallischen oder resorbierbaren Materialien und können mit Hilfe verschiedener Operationstechniken offen oder endoskopisch eingesetzt werden.

Die publizierten Ergebnisse der cagegestützten Operationsverfahren an der Lendenwirbelsäule zeigen sowohl mit als auch ohne zusätzliche Instrumentierung überwiegend hohe knöcherne Fusionsraten von >90%, wobei die zusätzliche Applikation osteoinduktiver Substanzen (v. a. BMP) noch zu einer weiteren Verbesserung zu führen scheint.

Da die dorsoventrale Spondylodese mit Fixateur interne und Knochen gleich hohe Konsolidierungsraten aufweist, sind die Vorzüge der Cages in erster Linie in der Aufrechterhaltung des Distraktionseffekts, in der Möglichkeit eines einseitigen Vorgehens ohne zusätzliche Instrumentation (auch endoskopisch) und in der geringeren „donor-side morbidity“ im Bereich der Knochenentnahmestelle zu sehen.

Abstract

Over the last 15 years, interbody metal implants have become commonly used worldwide for lumbar interbody fusion. The so called “cages” are made of metal or absorbable materials. By using different surgical techniques, they can be implanted either regularly or via endoscopy.

The published results on surgical techniques using cages for the lumbar spine show, in most cases and with or without additional instrumentation, rates of fusion of more than 90%. It seems that the use of osteoinductive substances (especially BMP) leads to even better results.

Dorsoventral fusion with internal fixation and bone show the same rate of consolidation, but the advantages of cages are primarily in the maintenance of the distraction and the possibility of a single surgical procedure without additional instrumentation (including endoscopy), and in a lower donor side morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg Spine 91 [2 Suppl]: 186–192

    Google Scholar 

  2. Bader RJ, Steinhauser E, Rechl H, Mittelmeier W, Bertagnoli R, Gradinger R (2002) Mechanical studies of lumbar interbody fusion implants. Orthopäde 31(5): 459–465

    Google Scholar 

  3. Bagby GW (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 11(6): 931–934

    PubMed  Google Scholar 

  4. Boden SD (1998) Bone repair and enhancement clinical trial design. Spine applications. Clin Orthop Relat Res 355 [Suppl]: 336–346

    Article  Google Scholar 

  5. Boden SD, Schimandle JH, Hutton WC et al. (1997) In vivo evaluation of a resorbable osteoinductive composite as a graft substitute for lumbar spinal fusion. J Spinal Desord 10(1): 1–11

    Google Scholar 

  6. Boden SD, Martin GJ Jr, Horton WC, Truss TL, Sandhu HS (1998) Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 11(2): 95–101

    PubMed  Google Scholar 

  7. Boden SD, Titus L, Hair G et al. (1998) Lumbar spine fusion by local gene therapy with a cDNA endoding a novel osteoinductive protein (LMP-1). Spine 23: 2486–2492

    Article  PubMed  Google Scholar 

  8. Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25(3): 376–381

    Article  PubMed  Google Scholar 

  9. Brantigan JW, Neidre A, Toohey JS (2004) The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J 4(6): 681–688

    Article  PubMed  Google Scholar 

  10. Brodsky AE, Kovalsky ES, Khalil MA (1991) Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine 16 [6 Suppl]: 261–265

    PubMed  Google Scholar 

  11. Burkus JK (2002) Intervertebral fixation: clinical results with anterior cages. Orthop Clin North Am 32(2): 349–571

    Article  Google Scholar 

  12. Burkus JK (2004) Bone morphogenetic proteins in anterior lumbar interbody fusion: old techniques and new technologies. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves. J Neurosurg Spine 1(3): 254–260

    PubMed  Google Scholar 

  13. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15(5): 337–349

    PubMed  Google Scholar 

  14. Chen L, Tang T, Yang H (2003) Complications associated with posterior lumbar interbody fusion using Bagby and Kuslich method for treatment of spondylolisthesis. Clin Med J (Engl) 116(1): 99–103

    Google Scholar 

  15. Chitnavis B, Barbagallo G, Selway R et al. (2001) Posterior lumbar interbody fusion for revision disc surgery: review of 50 cases in which carbon fiber cages were implanted. J Neurosurg Spine 95(2): 190–195

    Google Scholar 

  16. Christensen FB, Hansen ES, Eiskjaer SP et al. (2002) Circumferential lumbar spinal fusion with Brantigan cage versus posterolateral fusion with titanium Cotrel-Dubousset instrumentation: a prospective, randomized clinical study of 146 patients. Spine 27(23): 2674–2683

    Article  PubMed  Google Scholar 

  17. Commarmond J (2001) One-segment interbody lumbar arthrodesis using impacted cages: posterior unilateral approach versus posterior bilateral approach. Rev Chir Orthop Reparatrice Appar Mot 87(2): 129–134

    PubMed  Google Scholar 

  18. Couture DE, Branch CL Jr (2004) Posterior lumbar interbody fusion with bioabsorbable spacers and local autograft in a series of 27 patients. Neurosurg Focus 16(3): E8

    Google Scholar 

  19. Cunningham BW, Polly DW Jr (2002) The use of interbody cage devices for spinal deformity: a biomechanical perspective. Clin Orthop Relat Res 394: 73–83

    Article  PubMed  Google Scholar 

  20. Cunningham BW, Kanayama M, Parker LM et al. (1999) Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 24(6): 509–518

    Article  PubMed  Google Scholar 

  21. Diedrich O, Kraft CN, Bertram R, Wagner U, Schmitt O (2000) Dorsal lumbar interbody implantation of cages for stabilizing segmental spinal instabilities. Z Orthop Ihre Grenzgeb 138(2): 162–168

    Article  PubMed  Google Scholar 

  22. Dimar JR 2nd, Beck DJ, Glassman SD, Voor MJ, Wang M (2001) Posterior lumbar interbody cages do not augment segmental biomechanical stability. Am J Orthop 30(8): 636–639

    PubMed  Google Scholar 

  23. Elias WJ, Simmons NE, Kaptain GJ, Chadduck JB, Whitehill R (2000) Complications of posterior lumbar interbody fusion when using a titanium threaded cage device. J Neurosurg Spine 93 [1 Suppl]: 45–52

    Google Scholar 

  24. Escobar E, Transfeldt E, Garvey T, Ogilvie J, Graber J, Schultz L (2003) Video-assisted versus open anterior lumbar spine fusion surgery: a comparison of four techniques and complications in 135 patients. Spine 28(7): 729–732

    Article  PubMed  Google Scholar 

  25. Eysel P, Furderer S, Rompe JD, Zollner J (2000) Initial instability of different cages for fusion of the cervical spine. Zentralbl Neurochir 61(4): 171–176

    Article  PubMed  Google Scholar 

  26. Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT (1997) 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 22(24): 2807–2812

    Article  PubMed  Google Scholar 

  27. Früh HJ, Liebetrau A, Bertagnoli R (2002) Fusionsimplantate aus kohlenstofffaserverstärktem Kunststoff. Orthopäde 31(5): 454–458

    Google Scholar 

  28. Hecht BP, Fischgrund JS, Herkowitz HN, Penman L, Toth JM, Shirkhoda A (1999) The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 24(7): 629–636

    Article  PubMed  Google Scholar 

  29. Hee HT, Castro FP Jr, Majd ME, Holt RT, Myers L (2001) Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis of complications and predictive factors. J Spinal Disord 14(6): 533–540

    Article  PubMed  Google Scholar 

  30. Heim SE, Altimari A (2002) Laparoscopic approaches to fusion of the lumbosacral spine: latest techniques. Orthop Clin North Am 33(2): 413–420

    Article  PubMed  Google Scholar 

  31. Henssge EJ, Hannslik L (1979) Implantat als Ersatz für spongiös aufgebaute Knochen. DPA p 2910267

  32. Holte DC, O’Brien JP, Renton P (1994) Anterior lumbar fuxion using a hybrid interbody graft. A preliminary radiographic report. Eur Spine J 3(1): 32–38

    PubMed  Google Scholar 

  33. Janssen ME, Nguyen C, Beckham R, Larson A (2000) Biological cages. Eur Spine J 9 [Suppl 1]: 102–109

    Google Scholar 

  34. Janssen ME, Lam C, Beckham R (2001) Outcomes of allogenic cages in anterior and posterior lumbar interbody fusion. Eur Spine J 10 [Suppl 2]: 158–168

    Article  Google Scholar 

  35. Kanayama M, Cunningham BW, Weis JC et al. (1998) The effects of rigid spinal instrumentation and solid bony fusion on spinal kinematics. A posterolateral spinal arthrodesis model. Spine 23(7): 767–773

    Article  PubMed  Google Scholar 

  36. Kanayama M, Cunningham BW, Haggerty CJ et al. (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg Spine 93 [2 Suppl]: 259–265

    Google Scholar 

  37. Kandziora F, Pflugmacher R, Schafer J et al. (2001) Biomechanical comparison of cervical spine interbody fusion cages. Spine 26(17): 1850–1857

    Article  PubMed  Google Scholar 

  38. Katkhouda N, Campos GM, Mavor E et al. (1999) Is laparoscopic approach to lumbar spine fusion worthwhile? Am J Surg 178(6): 458–461

    Article  PubMed  Google Scholar 

  39. Kettler A, Dietl R, Krammer M et al. (2002) Dislokationstendenz, stabilisierende Wirkung und Einbruchtendenz unterschiedlicher LWS-Cages im in-vitro-Experiment. Orthopäde 31(5): 481–487

    Google Scholar 

  40. Khodadadyan-Klosterman C, Kandziora F, Schnake KJ, Lewandrowski KU, Wise D, Weiler A, Haas NP (2001) Mechanical comparison of biodegradable intervertebral lumbar cages. Chirug 72(12): 1431–1438

    Google Scholar 

  41. Krüger M, Henssge EJ, Sellin D (1985) Gegossene spongiös-metallische Implantate im Tierversuch. Z. Orthop Ihre Grenzgeb 123(6): 962–965

    Google Scholar 

  42. Kuslich SD, Ulstrom CL, Griffith SL et al. (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine 23(11): 1267–1279

    Article  PubMed  Google Scholar 

  43. Kuslich SD, Danielson G, Dowdle JD et al. (2000) Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 25(20): 2656–2662

    Article  PubMed  Google Scholar 

  44. Lieberman IH, Willsher PC, Litwin DE, Salo PT, Kraetschmer BG (2000) Transperitoneal laparoscopic exposure for lumbar interbody fusion. Spine 25(4): 509–514

    Article  PubMed  Google Scholar 

  45. Lowe TG, Tahernia AD, O’Brien MF, Smith DA (2002) Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J Spinal Disord Tech 15(1): 31–38

    PubMed  Google Scholar 

  46. Lowe TG, Coe JD (2002) Bioresorbable polymer implants in the unilateral transforaminal lumbar interbody fusion procedure. Orthopedics 25 [10 Suppl]: 1179–1183

    Google Scholar 

  47. Maciejczak A, Radek A (1998) Lumbar interbody fusion. Biomechanical significance for the spine. Neurol Neurochir Pol 32(5): 1247–1259

    PubMed  Google Scholar 

  48. Madan SS, Harley JM, Boeree NR (2003) Anterior lumbar interbody fusion: does stable anterior fixation matter? Eur Spine J 12(4): 386–392

    Article  PubMed  Google Scholar 

  49. Magin MN, Delling G (2001) Improved lumbar vertebral interbody fusion using rhOP-1 : a comparison of autogenous bone graft, bovine hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in sheep. Spine 26(5): 469–478

    Article  PubMed  Google Scholar 

  50. Matge G, Leclercq TA (2000) Rationale for interbody fusion with threaded titanium cages at cervical and lumbar levels. Results on 357 cases. Acta Neurochir (Wien) 142(4): 425–433

    Article  Google Scholar 

  51. McAfee PC (1999) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81(6): 859–880

    PubMed  Google Scholar 

  52. McAfee PC, Lee GA, Fedder IL, Cunningham BW (2002) Anterior BAK instrumentation and fusion: complete versus partial discectomy. Clin Orthop Relat Res 394: 55–63

    Article  PubMed  Google Scholar 

  53. Meyer P (2000) Universal spine fracture classification. Chir Organi Mov 85(2): 95–100

    PubMed  Google Scholar 

  54. Molinari RW, Bridwell KH, Lenke LG, Baldus C (2002) Anterior column support in surgery for high-grade, isthmic spondylolisthesis. Clin Orthop Relat Res 394: 109–120

    Article  PubMed  Google Scholar 

  55. Mulholland RC (2000) Cages: outcome and complications. Eur Spine J 9 [Suppl 1]: 110–113

    Google Scholar 

  56. Mummaneni PV, Pan J, Haid RW, Rodts GE (2004) Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion: a preliminary report. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine 1(1): 19–23

    PubMed  Google Scholar 

  57. Ohyama T, Kubo Y, Iwata H, Taki W (2004) β-tricalcium phosphate combined with recombinant human bone morphogenetic protein-2: a substitute for autograft, used for packing interbody fusion cages in the canine lumbar spine. Neurol Med Chir (Tokyo) 44(5): 234–241

    Article  Google Scholar 

  58. Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9 [Suppl 1]: 95–101

    Google Scholar 

  59. Pellise F, Puig O, Rivas A, Bago J, Villanueva C (2002) Low fusion rate after L5-S1 laparoscopic anterior lumbar interbody fusion using twin stand-alone carbon fiber cages. Spine 27(15): 1665–1669

    Article  PubMed  Google Scholar 

  60. Pitzen T, Matthis D, Caspar W, Muller-Storz H, Steudel WI (2000) Initial stability of two PLIF-techniques. A biomechanical comparison using a finite element model. Orthopade 29(1): 68–72

    Article  PubMed  Google Scholar 

  61. Ray CD (1997) Threaded titanium cages for lumbar interbody fusions. Spine 22(6): 667–679

    Article  PubMed  Google Scholar 

  62. Regan JJ, Yuan H, McAfee PC (1999) Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery. A prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine 24(4): 402–411

    Article  PubMed  Google Scholar 

  63. Rosenberg WS, Mummaneni PV (2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 48(3): 569–575

    Article  PubMed  Google Scholar 

  64. Salehi SA, Tawk R, Ganju A, LaMarca F, Liu JC, Ondra SL (2004) Transforaminal lumbar interbody fusion: surgical technique and results in 24 patients. Neurosurgery 54(2): 368–374

    Article  PubMed  Google Scholar 

  65. Salis-Soglio G von (1982) Die ventrale interkorporelle Distraktions-Spondylodese an der Lendenwirbelsäule — eine tierexperimentelle Studie. Z Orthop (120): 509

  66. Salis-Soglio G von (1985) Die ventrale interkorporelle Distraktions-Spondylodese an der Lendenwirbelsäule. Z Orthop 123: 852–858

    PubMed  Google Scholar 

  67. Salis-Soglio G von (1992) Anterior lumbar fusion using a memory alloy implant. Orthopaedics Traumaology, pp 165–176

  68. Sandhu HS (2000) Anterior lumbar interbody fusion with osteoinductive growth factors. Clin Orthop Relat Res 371: 56–60

    Article  PubMed  Google Scholar 

  69. Sasso RC, Kitchel SH, Dawson EG (2004) A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device. Spine 29(2): 113–122

    Article  PubMed  Google Scholar 

  70. Schiffman M, Brau SA, Henderson R, Gimmestad G (2003) Bilateral implantation of low-profile interbody fusion cages: subsidence, lordosis, and fusion analysis. Spine J 3(5): 377–387

    Article  PubMed  Google Scholar 

  71. Schneid S, Sabitzer RJ, Fuss FK, Grupp TM, Blömer W (2002) In-vitro-Stabilitätsuntersuchung eines neuartigen Implantatsystems für den minimal- invasiven transforaminalen Zugang. Orthopäde 31(5): 488–493

    Google Scholar 

  72. Shikinami Y, Okuno M (2003) Mechanical evaluation of novel spinal interbody fusion cages made of bioactive, resorbable composites. Biomaterials 24(18): 3161–3170

    Article  PubMed  Google Scholar 

  73. Stoltze D, Harms J (1999) Correction of posttraumatic deformities. Principles and methods. Orthopade 28(8): 731–745

    Article  PubMed  Google Scholar 

  74. Thalgott JS, Giuffre JM, Klezl Z, Timlin M (2002) Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J 2(1): 63–69

    Article  PubMed  Google Scholar 

  75. Togawa D, Bauer TW, Brantigan JW, Lowery GL (2001) Bone graft incorporation in radiographically successful human intervertebral body fusion cages. Spine 26(24): 2744–2750

    Article  PubMed  Google Scholar 

  76. Toth JM, Seim HB 3rd, Schwardt JD et al. (2000) Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine 25(20): 2580–2587

    Article  PubMed  Google Scholar 

  77. Tsantrizos A, Andreou A, Aebi M, Steffen T (2000) Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs. Eur Spine J 9(1): 14–22

    Article  PubMed  Google Scholar 

  78. Tsantrizos A, Baramki HG, Zeidman S, Steffen T (2000) Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine 25(15): 1899–1907

    Article  PubMed  Google Scholar 

  79. Van Dijk M, Smit TH, Burger EH, Wuisman PI (2002) Bioabsorbable poly-L-lactic acid cages for lumbar interbody fusion: three-year follow-up radiographic, histologic, and histomorphometric analysis in goats. Spine 27(23): 2706–2714

    Article  PubMed  Google Scholar 

  80. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18(8): 983–991

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Freiherr von Salis-Soglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiherr von Salis-Soglio, G., Scholz, R. & Seller, K. Interkorporelle Metallimplantate („Cages“) bei lumbalen Spondylodesen. Orthopäde 34, 1033–1039 (2005). https://doi.org/10.1007/s00132-005-0840-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-005-0840-7

Schlüsselwörter

Keyword

Navigation