Skip to main content

Advertisement

Log in

Inflammatorische Reaktion bei abriebinduzierter und infektiöser Lockerung von Hüft- und Knieendoprothesen

Inflammatory reactions in the wear particle induced and infectious periprosthetic membrane of loosened hip- and knee endoprostheses: pathogenetic relevance of differentially expressed genes cd9, cd11b, cd18, cd52 and pdgfrβ

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund.

Mittels cDNA-Microarrays konnten konstant differenziell exprimierte entzündungsassoziierte Gene in der abriebinduzierten und infektiösen periprothetischen Membran nachgewiesen werden. Ziel der vorliegenden Arbeit ist die Validierung der Microarraydaten, um signifikante Unterschiede im Genexpressionsprofil auf RNA- und Proteinebene darzustellen.

Patienten und Methoden.

Gewebeproben von 16 abriebinduzierten und 20 infektiösen periprothetischen Membranen wurden mittels RT-PCR und Immunhistologie auf die Expression entzündungsassoziierter Gene untersucht.

Ergebnisse.

Mittels RT-PCR konnten die Gene cd9, cd11b, cd18 und cd52 sowie pdgfrβ in Interfacemembranen nachgewiesen werden. Die Immunhistochemie zeigte in der abriebinduzierten Membran eine signifikant geringere Genexpression von PDGFRβ, dagegen eine differenzielle Überexpression von CD9, CD11b und CD52. CD18 zeigte keinen signifikanten Expressionsunterschied zwischen abriebinduziertem und infektiösem periprothetischem Gewebe.

Schlussfolgerung.

Unterschiedliche Typen der periprothetischen Membran spiegeln sich in differenten Genexpressionsprofilen wider. Mittels RT-PCR und Immunhistochemie konnten die Microarraydaten der Gene cd9, cd11b, cd52 und pdgfrβ validiert werden. Die Bestimmung der Genprodukte von cd9, cd11b und cd52 im Blut oder im Gewebe kann helfen, eine abriebinduzierte von einer infektiösen Lockerung zu unterscheiden.

Abstract

Background.

A previous cDNA-microarray analysis described constantly differentially expressed genes in wear particle induced and infectious SLIM (synovial-like interface membrane). This study aims to validate the cDNA microarray data in order to approve differences of the gene expression profiles of RNA and proteins.

Methods.

Tissue from 16 wear particle induced and 20 infectious periprosthetic membranes were analyzed by RT-PCR and immunohistology with regard to the expression of inflammatoric associated genes.

Results.

RT-PCR showed the genes cd9, cd11b, cd18, cd52 as well as pdgfrβ in interface membranes. In the wear particle induced membrane the immunohistochemical analysis showed a significantly weaker gene expression of PDGFRβ, whereas the differential overexpression of CD9, CD11b and CD52 was confirmed. For CD18, there was no difference in expression between wear induced and infectious periprosthetic tissue.

Conclusion.

Different pathomechanisms, which are reflected by different gene expression profiles, might produce different types of periprosthetic membranes. By RT-PCR and immunohistochemical analysis the micro array data of the genes cd9, cd11b, cd52 and pdgfrβ could be validated. Identifying the gene products of cd9, cd11b and cd52 in blood or tissue may help to differentiate between wear induced and infectious loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–e
Abb. 2a–d
Abb. 3

Literatur

  1. Albrektsson T, Albrektsson B (1987) Osseointegration of bone implants: a review of an alternative mode of fixation. Acta Orthop Scand 58: 567–577

    CAS  PubMed  Google Scholar 

  2. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43: 338–348

    Article  CAS  PubMed  Google Scholar 

  3. Aspenberg P, Goodman S, Toksvig-Larsen S, Ryd L, Albrektsson T (1992) Intermittent micromotion inhibits bone growth. Titanium implants in rabbits. Acta Orthop Scand 63: 141–145

    CAS  PubMed  Google Scholar 

  4. Barden B, H. C (1999) Failure mechanisms in total hip and knee arthroplasty: a morphological and radiologic study. Mat Wiss Werkstofftech 30: 746–754

    Article  Google Scholar 

  5. Burton DS, Schurman DJ (1975) Hematogenous infection in bilateral total hip arthroplasty. Case report. J Bone Joint Surg Am 57: 1004–1005

    CAS  PubMed  Google Scholar 

  6. Campbell P, C. I, Kossowsky N (1991) Clinical significance of wear debris. In: Amstutz HC (ed) Hip arthroplasty. Churchill Livingstone, New York, pp 112–117

  7. Charnley J (1961) Arthroplasty of the hip. A new operation. Lancet 1: 1129–1132

    Article  Google Scholar 

  8. Clay D, Rubinstein E, Mishal Z et al. (2001) CD9 and megakaryocyte differentiation. Blood 97: 1982–1989

    Article  CAS  PubMed  Google Scholar 

  9. Delling G, Kofeldt C, Engelbrecht E (1987) Knochen- und Grenzschichtveränderungen nach Anwendung von Knochenzement- und Langzeituntersuchungen an humanen Biopsie-, Operations- und Autopsiematerial. Aktuelle Probl Chir Orthop 31: 163–171

    CAS  PubMed  Google Scholar 

  10. Gehrke T, Sers C, Morawietz L, Fernahl G, Neidel J, Frommelt L, Krenn V (2003) Receptor activator of nuclear factor kappaB ligand is expressed in resident and inflammatory cells in aseptic and septic prothesis loosening. Scand J Pleumatol 32: 287–294

    Article  CAS  Google Scholar 

  11. Gentzsch C, Kaiser E, Plutat J, Sellckau R, Wodtke J, Delling G (2002) cDNA-Arrays. Pathologe 23: 373–378

    Article  CAS  PubMed  Google Scholar 

  12. Giese NA, Marijianowski MM, McCook O et al. (1999) The role of alpha and beta platelet-derived growth factor-receptor in the vascular response to injury in nonhuman primates. Arterioscler Thromb Vasc Biol 19: 900–909

    CAS  PubMed  Google Scholar 

  13. Hayashi T, Inoue H (1986) Tissue reaction around loosened prostheses: a histological, X-ray, microanalytic and immunological study. Acta Med Okayama 40: 229–241

    CAS  PubMed  Google Scholar 

  14. Hirakawa K, Bauer TW, Stulberg BN, Wilde AH (1996) Comparison and quantitation of wear debris of failed total hip and total knee arthroplasty. J Biomed Mater Res 31: 257–263

    Article  CAS  PubMed  Google Scholar 

  15. Jellicoe PA, Cohen A, Campbell P (2002) Haemophilus parainfluenzae complicating total hip arthroplasty. J Arthroplasty 17: 114–116

    Article  CAS  PubMed  Google Scholar 

  16. Johanson NA, Bullough P, Wilson PD, Salvati EA, Ranawat CS (1987) The microscopic anatomy of the bone-cemented interface in failed total hip athroplasties. Clin Orthop 218: 123–135

    PubMed  Google Scholar 

  17. Kataoka M, Torisu T, Tsumura H, Hirayama T, Fujikawa Y (2000) Role of multinuclear cells in granulation tissue in osteomyelitis. Acta Orthop Scand 71: 414–418

    Article  CAS  PubMed  Google Scholar 

  18. Katzer F (2003) Frühlockerung von Hüftgelenksendoprothesen. Dtsch Ärtzebl 100: B661–B666

    Google Scholar 

  19. König A, G. J, Kirschner S (2001) Ergebnisse der Press-Fit-Condylar-Prothese (PFC). Eulert J, Hasenpflug J (Hrsg) Praxis der Knieendoprothetik. Springer, Berlin Heidelberg New York, S 226–233

  20. Krismer M, Stockl B, Fischer M, Bauer R, Maryhofer P, Orgon M (1996) Early migration predicts late aseptic failure of hip sockets. J Bone Joint Surg Br 78: 422–426

    CAS  PubMed  Google Scholar 

  21. Malchau H, Herberts P, Eisler T, Garellick G, Soderman P (2002) The Swedish Total Hip Replacement Register. J Bone Joint Surg Am 84-A: 2–20

  22. McNally AK, A. J (1994) Complement C3 participation in monocyte adhesion to different surfaces. Proc Natl Acad Sci USA, 91: 10119–10123

  23. McNally AK, Anderson JM (2002) β1 and β2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol 160: 621–630

    CAS  PubMed  Google Scholar 

  24. Morawietz L, Gehrke T, Frommelt L et al. (2003) Differentiel gene expression in the periprosthetic membrane: lumbricin as an new possible factor in prosthesis loosening. Virchow Arch 443: 57–66

    Article  CAS  Google Scholar 

  25. Pandey R, Drakoulakis E, Athanasou NA (1999) An assessment of the histological criteria used to diagnose infection in hip revision arthroplasty tissues. J Clin Pathol 52: 118–123

    CAS  PubMed  Google Scholar 

  26. Rader CP, Baumann B, Rolf O et al. (2002) Detection of differentially expressed genes in particle disease using array-filter analysis. Biomed Tech 47: 111–116

    CAS  Google Scholar 

  27. Scherberich A, Moog S, Haan-Archipoff G, Azorsa DO, Lanza F, Beretz A (1998) Tetraspanin CD9 is associated with very late-acting integrins in human vascular smooth muscle cells and modulates collagen matrix reorganization. Arterioscler Thromb Vasc Biol 18: 1691–1697

    CAS  PubMed  Google Scholar 

  28. Shephard R (2003) Adhesion molecules, catecholamines and leukocyte redistribution during and following exercise. Sports Med 33: 261–284

    PubMed  Google Scholar 

  29. Tarrant JM, Robb L, van Spriel AB, Wright MD (2003) Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 24: 610–617

    Article  CAS  PubMed  Google Scholar 

  30. Treumann A, Lifely MR, Schneider P, Ferguson MA (1995) Primary structure of CD52. J Biol Chem 270: 6088–6099

    Article  CAS  PubMed  Google Scholar 

  31. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82: 457–476

    Article  CAS  PubMed  Google Scholar 

  32. Uren A, Merchant MS, Sun CJ et al. (2003) Beta-platelet-derived growth factor receptor mediates motility and growth of Ewing’s sarcoma cells. Oncogene 22: 2334–2342

    Article  CAS  PubMed  Google Scholar 

  33. Willert HG, S. M, Buchhorn G, Kriete U (1978) Materialverschleiß und Gewebereaktion bei künstlichen Gelenken (Histopathologie, Biokompatibilität, biologische und klinische Probleme). Orthopäde 7: 62–83

  34. Xu JW, Konttinen YT, Li TF et al. (1998) Production of platelet-derived growth factor in aseptic loosening of total hip replacement. Rheumatol Int 17: 215–221

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Haginoya K, Sun G, Dai H, Onuma A, Iinuma K (2003) Platelet-derived growth factor and its receptors are related to the progression of human muscular dystrophy: an immunohistochemical study. J Pathol 201: 149–159

    Article  CAS  PubMed  Google Scholar 

  36. Morawietz L et al. (2004) Proposal for the classification of the periprosthetic membrane from loosened hip and knee endoprotheses. Pathologe 25: 375–384

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung.

Frau G. Fernahl und Frau J. Karle gebührt unser herzlichster Dank für exzellente technische Unterstützung. Das Verfahren zur Diagnostik einer Prothesenlockerung ist durch die oligene GmbH zum Patent angemeldet. Diese Arbeit entstand im Rahmen des nationalen Genomforschungsnetzes (NGFN), Berlin Flame.

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Krenn.

Additional information

Gefördert durch Berlin Flame (nationales Genomforschungsnetz [NGFN]), SFB 421 und Gemeinnütziger Verein ENDO-Klinik e.V., Hamburg (Projekt W1/01, T.G., L.F., M.D., V.K.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, R., Morawietz, L., Gehrke, T. et al. Inflammatorische Reaktion bei abriebinduzierter und infektiöser Lockerung von Hüft- und Knieendoprothesen. Orthopäde 34, 55–64 (2005). https://doi.org/10.1007/s00132-004-0709-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-004-0709-1

Schlüsselwörter

Keywords

Navigation