Skip to main content

Advertisement

Log in

Antastgenauigkeit von Orientierungspunkten bei navigierter Implantation von Knieendoprothesen

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Ziel

Antastverfahren und Bewegungsanalysen werden intraoperativ bei bildgebungsunabhängigen Systemen zur navigierten Implantation von Knieendoprothesen benötigt. Die Antastung erfordert die exakte Kenntnis von Orientierungspunkten (Landmarken). In dieser anatomischen Studie wurden Landmarken definiert und wiederholt angetastet. Die Antastpräzision und die Wiederauffindbarkeit wurden mittels Inter- und Intraobserveranalyse ausgewertet. Mit den Orientierungspunkten wurden die femoralen und tibialen Achsen berechnet.

Material und Methode

Die Orientierungspunkte von 30 Femora und 27 Tibiae wurden von 3 Chirurgen mittels eines photogrammetrischen Systems, wie es intraoperativ zum Einsatz kommt, angetastet und digitalisiert. Die aufgezeichneten Daten wurden ausgewertet.

Ergebnisse

Definierte Landmarken können mit hoher Präzision angetastet werden. Die mittlere Abweichung des für die Implantatposition entscheidenden Einzelvektoren betrug am Femur 0,9 mm und an der Tibia 1,0 mm. Das Wiederaufsuchen der eigenen Tastpunkte durch den einzelnen Untersucher gelang mit einer Genauigkeit von 1,5 mm femoral und 1,0 mm tibial. Die Berechnung der mechanischen Achse zeigte eine mittlere Genauigkeit von 0,1° (min.—max.: 0°–0,9°) am Femur und 0,2° (min.—max.: 0°–1,1°) an der Tibia. Die kurzen Achsen (Rotationsachsen) am distalen Femur und der proximalen Tibia zeigten einen mittleren Schwankungsbereich von 0,7°–2,3° (0°–11,3°).

Conclusio

Die Längsachsen (mechanische Achsen) können exakt bestimmt werden, die Größe des Schwankungsbereiches der kurzen Achsen (Rotationsachsen) ist trotz präziser Antastung der Orientierungspunkte unbefriedigend. Deshalb erscheint die Bestimmung von mehr als einer Rotationsachse, sowohl am Femur als auch an der Tibia, und die intraoperative Visualisierung der Achsenberechnungen am Monitor notwendig.

Abstract

Aims

Cinematic and pointing procedures are used for non-image based navigated implantation during total knee replacement. Pointing procedures require an exact knowledge of the landmarks. In this anatomical study, landmarks are defined and repeatedly referenced. Precision and reproducibility are evaluated by means of an inter- and an intra-observer study. The axes of the femur and tibia are calculated using the landmarks.

Material and methods

The specific landmarks of 30 femurs and 27 tibias were palpated by three surgeons and digitised by means of a photogrammetric system, as used intra-operatively. The recorded data were statistically evaluated.

Results

The specific landmarks can be referenced with great precision. The vectors that influence the implant position show a mean femoral deviation of 0.9 mm and a mean tibial deviation of 1.0 mm. The repeating accuracy of every observer was 1.5 mm femoral and 1.0 mm tibial. The calculated long axes at the femur and tibia thus reach a precision of 0.1° (min.–max.: 0–0.9°) at the femur and 0.2° (.0–1.1°) at the tibia. The short axes at the distal femur and proximal tibia exhibit an average deviation of from 0.7° to 1.9° (0–11.3°).

Conclusion

Long axes (mechanical axes) can be determined exactly but the precision of the short axes (rotational axes) is unsatisfactory, although palpation of landmarks was accurate. Therefore, palpation of more than one rotational axis at the femur and tibia is mandatory and should be visualized on the monitor during surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4a, b

Literatur

  1. Aglietti P (2001) Disorders of the patellofemoral joint. In: Insall JN, Scott WN (eds) Surgery of the knee, 3rd edn. Churchill Livingstone, London, pp 944–948

  2. Berger RA (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop 286: 40–47

    Google Scholar 

  3. Berger RA (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop 356: 144–153

    Google Scholar 

  4. Butler-Manuel PA, Guy RL, Healty FW (1992) Measurement of tibial torsion--a new technique applicable to ultrasound and computed tomography. Br J Radiol 65/770: 119–126

    Google Scholar 

  5. Delp SL, Stulberg SD, Davies B et al. (1998) Computer assisted knee replacement. Clin Orthop 354: 49–56

    Google Scholar 

  6. Eckhoff DG, Metzger RG, Vandewalle MV (1995) Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop 321: 28–31

    Google Scholar 

  7. Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL (2000) Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthoplasty 15: 354–359

    Google Scholar 

  8. Hicks CA, Noble P, Tullos H (1995) The anatomy of the tibial intramedullary canal. Clin Orthop 321: 111–116

    Google Scholar 

  9. Krackow KA, Serpe L, Phillips MJ, Bayers-Thering M, Mihalko WM (1999) A new technique for determinding proper mechanical axis alignment during total knee arthroplasty: progress toward computer-assisted tka. Orthopedics 22: 698–702

    Google Scholar 

  10. Le Damany PG (1994) Technique of tibial tropometry. 1903. Clin Orthop 302: 4–10

    Google Scholar 

  11. Mielke RK, Clemens U, Jens JH, Kershally S (2001) Navigation in knee endoprosthesis implantation. Preliminary experiences and prospective comparative study with conventional implantation technique. Z Orthop Grenz 139: 109–116

    Google Scholar 

  12. Milner CE, Soames RW (1998) A comparison of four in vivo methods of measuring tibial torsion. J Anat 193: 139–144

    Google Scholar 

  13. Pfeifer T, Mahlo R, Franzreb M et al. (1995) Computed tomography in the determination of leg geometry. In Vivo 9: 257–261

    Google Scholar 

  14. Saragaglia D, Picard F, Chaussartd C et al. (2001) Computer-assisted knee arthroplasty. A comparison with a conventional procedure. Results of 50 cases in a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot 87: 18–28

    Google Scholar 

  15. Stiehl JB, Abbott BD (1995) Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty. J Arthoplasty 10: 785–789

    Google Scholar 

  16. Strecker W, Keppler P, Gebhard F, Kinzl L (1997) Length and torsion of the lower limb. JBJS Br 79: 1019–1023

    Google Scholar 

  17. Takai S, Sakakida K, Yamashita F, Suzu F, Izuta F (1985) Rotational alignment of the lower limb in osteoarthritis of the knee. Int Orthop 9: 209–215

    Google Scholar 

  18. Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop 321: 168–172

    Google Scholar 

  19. Whiteside LA, Summers RG (1983) Anatomical landmarks for an intramedullary alignment system for total knee replacement. Orthop Trans 7: 546–547

    Google Scholar 

  20. Yagi T, Sasaki T (1986) Tibial torsion in patients with medial-type osteoarthritic knee. Clin Orthop 213: 177–182

    Google Scholar 

  21. Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7: 132–137

    Google Scholar 

  22. Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. JBJS 69A: 873–880

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fuiko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuiko, R., Kotten, B., Zettl, R. et al. Antastgenauigkeit von Orientierungspunkten bei navigierter Implantation von Knieendoprothesen. Orthopäde 33, 338–343 (2004). https://doi.org/10.1007/s00132-003-0570-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-003-0570-7

Schlüsselwörter

Keywords

Navigation