Skip to main content
Log in

Intrauterine Therapie – wie ist der Stand der Dinge?

Intrauterine therapy—where do we stand?

  • Leitthema
  • Published:
Die Gynäkologie Aims and scope

Zusammenfassung

Die Fortschritte in der pränatalen Ultraschalldiagnostik der letzten 40 Jahre haben einerseits zu einer deutlichen Steigerung der Entdeckungsrate vorgeburtlicher Erkrankungen geführt, andererseits aber auch die Grundlage für die intrauterine Therapie einiger ausgewählter Erkrankungen geschaffen. Da die meisten vorgeburtlichen Interventionen mit Risiken sowohl für den Fetus als auch für die werdende Mutter verbunden sind, bleiben sie Erkrankungen vorbehalten, die unbehandelt eine tödliche Prognose haben oder im Laufe der intrauterinen Entwicklung eine deutliche Verschlechterung der Prognose erfahren. Bisher haben nur wenige dieser therapeutischen Konzepte ihren Wert im Rahmen kontrollierter Studien bewiesen. Dies sind insbesondere die Lasertherapie des fetofetalen Transfusionssyndroms, der intrauterine Verschluss der Spina bifida und die Trachealokklusion bei Zwerchfellhernien mit schwerer pulmonaler Hypoplasie. Andere intrauterine Therapieansätze sind weniger gut belegt, entweder aufgrund der Seltenheit der Erkrankung oder der mangelnden Verfügbarkeit des Instrumentariums und der entsprechend erfahrenen Therapeuten. Der Beitrag soll dem primär beratenden Gynäkologen einen Überblick über die etablierten Verfahren und die neueren Entwicklungen geben.

Abstract

Advances in prenatal ultrasound over the past 40 years have led to a significant increase in the detection rate of prenatal diseases but have also created the basis for intrauterine treatment in a subset of cases. As most prenatal interventions are associated with risks for both the fetus and the mother, they are reserved for diseases that have a fatal prognosis if left untreated, or face a significant deterioration during intrauterine development. To date, only a few of these therapeutic concepts have proven their value in controlled studies. These are, in particular, laser therapy for twin-to-twin transfusion syndrome, intrauterine closure of spina bifida, and tracheal occlusion for diaphragmatic hernia associated with severe pulmonary hypoplasia. Other intrauterine therapeutic approaches are less well documented, either due to the rarity of the condition or the lack of availability of instruments and appropriately experienced therapists. This article is intended to provide the primary consultant gynecologist with an overview of established procedures and recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15

Literatur

  1. WAPM Consensus Group on Twin-to-Twin Transfusion, Baschat A, Chmait RH et al (2011) Twin-to-twin transfusion syndrome (TTTS). J Perinat Med 39:107–112. https://doi.org/10.1515/JPM.2010.147

    Article  Google Scholar 

  2. Bamberg C, Hecher K (2022) Twin-to-twin transfusion syndrome: Controversies in the diagnosis and management. Best Pract Res Clin Obstet Gynaecol 84:143–154. https://doi.org/10.1016/j.bpobgyn.2022.03.013

    Article  PubMed  Google Scholar 

  3. Senat M‑V, Deprest J, Boulvain M et al (2004) Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 351:136–144. https://doi.org/10.1056/NEJMoa032597

    Article  CAS  PubMed  Google Scholar 

  4. Baschat AA, Barber J, Pedersen N et al (2013) Outcome after fetoscopic selective laser ablation of placental anastomoses vs equatorial laser dichorionization for the treatment of twin-to-twin transfusion syndrome. Am J Obstet Gynecol 209(234):e1–8. https://doi.org/10.1016/j.ajog.2013.05.034

    Article  Google Scholar 

  5. Diehl W, Diemert A, Grasso D et al (2017) Fetoscopic laser coagulation in 1020 pregnancies with twin–twin transfusion syndrome demonstrates improvement in double-twin survival rate. Ultrasound Obstet Gynecol 50:728–735. https://doi.org/10.1002/uog.17520

    Article  CAS  PubMed  Google Scholar 

  6. Slaghekke F, Lopriore E, Lewi L, et al (2014) Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. Lancet 383:2144–2151. https://doi.org/10.1016/S0140-6736(13)62419-8

  7. Akkermans J, De Vries SM, Zhao D et al (2017) What is the impact of placental tissue damage after laser surgery for twin-twin transfusion syndrome? A secondary analysis of the Solomon trial. Placenta 52:71–76. https://doi.org/10.1016/j.placenta.2017.02.023

    Article  PubMed  Google Scholar 

  8. Stirnemann J, Slaghekke F, Khalek N, et al (2021) Intrauterine fetoscopic laser surgery versus expectant management in stage 1 twin-to-twin transfusion syndrome: an international randomized trial. Am J Obstet Gynecol 224:528.e1–528.e12. https://doi.org/10.1016/j.ajog.2020.11.031

  9. Berg C, Holst D, Mallmann MR et al (2014) Early vslate intervention in twin reversed arterial perfusion sequence. Ultrasound Obstet Gynecol 43:60–64. https://doi.org/10.1002/uog.12578

    Article  CAS  PubMed  Google Scholar 

  10. Lewi L, Valencia C, Gonzalez E et al (2010) The outcome of twin reversed arterial perfusion sequence diagnosed in the first trimester. Am J Obstet Gynecol 203(213):e1–4. https://doi.org/10.1016/j.ajog.2010.04.018

    Article  Google Scholar 

  11. Weber EC, Recker F, Gottschalk I et al (2022) Outcome of TRAP sequence treated in the first trimester—a ten-year single-center experience. Ultraschall Med 43:614–618. https://doi.org/10.1055/a-1526-1775

    Article  PubMed  Google Scholar 

  12. de Sousa TM, Glosemeyer P, Diemert A et al (2020) First-trimester intervention in twin reversed arterial perfusion sequence. Ultrasound Obstet Gynecol 55:47–49. https://doi.org/10.1002/uog.20860

    Article  Google Scholar 

  13. Weber EC, Recker F, Gottschalk I et al (2021) Outcome of monochorionic monoamniotic twin reversed arterial perfusion sequence diagnosed in the first trimester. Fetal Diagn Ther 48:778–784. https://doi.org/10.1159/000519860

    Article  PubMed  Google Scholar 

  14. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004. https://doi.org/10.1056/NEJMoa1014379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McLone DG, Dias MS (2003) The Chiari II malformation: cause and impact. Child’s Nervous System 19:540–550. https://doi.org/10.1007/s00381-003-0792-3

  16. Meuli M, Meuli-Simmen C, Hutchins GM, et al (1997) The spinal cord lesion in human fetuses with myelomeningocele: Implications for fetal surgery. Journal of Pediatric Surgery 32:448–452. https://doi.org/10.1016/S0022-3468(97)90603-5

  17. Chaoui R, Benoit B, Mitkowska-Wozniak H et al (2009) Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11–13-week scan. Ultrasound Obstet Gynecol 34:249–252. https://doi.org/10.1002/uog.7329

    Article  CAS  PubMed  Google Scholar 

  18. Chaoui R, Benoit B, Entezami M et al (2020) Ratio of fetal choroid plexus to head size: simple sonographic marker of open spina bifida at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 55:81–86. https://doi.org/10.1002/uog.20856

    Article  CAS  PubMed  Google Scholar 

  19. Ushakov F, Sacco A, Andreeva E et al (2019) Crash sign: new first-trimester sonographic marker of spina bifida. Ultrasound Obstet Gynecol 54:740–745. https://doi.org/10.1002/uog.20285

    Article  CAS  PubMed  Google Scholar 

  20. Maiz N, Arévalo S, García-Manau P et al (2023) Presurgery motor level assessment for prediction of motor level at birth in fetuses undergoing prenatal repair of open spina bifida: time to abandon anatomical level in counseling. Ultrasound Obstet Gynecol 61:728–733. https://doi.org/10.1002/uog.26180

    Article  CAS  PubMed  Google Scholar 

  21. Carreras E, Maroto A, Illescas T et al (2016) Prenatal ultrasound evaluation of segmental level of neurological lesion in fetuses with myelomeningocele: development of a new technique: Functional ultrasound in MMC. Ultrasound Obstet. Gynecol, Bd. 47, S 162–167 https://doi.org/10.1002/uog.15732

    Book  Google Scholar 

  22. Trigo L, Chmait RH, Llanes A et al (2024) Revisiting MOMS criteria for prenatal repair of spina bifida: upper gestational-age limit should be raised and assessment of prenatal motor function rather than anatomical level improves prediction of postnatal function. Ultrasound in Obstet &amp. Gyne 63:53–59. https://doi.org/10.1002/uog.27536

    Article  CAS  Google Scholar 

  23. Kunpalin Y, Sichitiu J, Krishnan P et al (2023) Simple prenatal imaging predictors for postnatal cerebrospinal fluid diversion surgery in fetuses undergoing in utero surgery for spina bifida. Prenat Diagn 43:1605–1613. https://doi.org/10.1002/pd.6453

    Article  PubMed  Google Scholar 

  24. Mustafa HJ, Arab K, Javinani A, et al (2023) Prenatal predictors of need for cerebrospinal fluid diversion in infants following prenatal repair of open spina bifida; systematic review and meta-analysis. Am J Obstet Gynecol MFM 5:100983. https://doi.org/10.1016/j.ajogmf.2023.100983

  25. Agrawal S, Al-Refai A, Abbasi N et al (2021) Correlation of fetal ventricular size and need for postnatal cerebrospinal fluid diversion surgery in open spina bifida. Ultrasound Obstet Gynecol. uog, Bd. 24767. https://doi.org/10.1002/uog.24767

    Book  Google Scholar 

  26. Kohl T (2014) Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: surgical technique and perioperative outcome. Ultrasound Obstet Gynecol 44:515–524. https://doi.org/10.1002/uog.13430

    Article  CAS  PubMed  Google Scholar 

  27. Belfort MA, Whitehead WE, Shamshirsaz AA et al (2019) Comparison of two fetoscopic open neural tube defect (ONTD) repair techniques: Single-layer vs three-layer closure. Ultrasound Obstet Gynecol. uog, Bd. 21915. https://doi.org/10.1002/uog.21915

    Book  Google Scholar 

  28. Belfort MA, Whitehead WE, Shamshirsaz AA et al (2017) Fetoscopic open neural tube defect repair: Development and refinement of a two-port, carbon dioxide insufflation technique. Obstet Gynecol 129:734–743. https://doi.org/10.1097/AOG.0000000000001941

    Article  CAS  PubMed  Google Scholar 

  29. Pedreira DAL, Zanon N, De Sá RAM et al (2014) Fetoscopic single-layer repair of open spina bifida using a cellulose patch: preliminary clinical experience. J Matern Fetal Neonatal Med 27:1613–1619. https://doi.org/10.3109/14767058.2013.871701

    Article  PubMed  Google Scholar 

  30. Pedreira DAL, Zanon N, Nishikuni K, et al (2016) Endoscopic surgery for the antenatal treatment of myelomeningocele: the CECAM trial. Am J Obstet Gynecol 214:111.e1–111.e11. https://doi.org/10.1016/j.ajog.2015.09.065

  31. Lapa DA, Chmait RH, Gielchinsky Y et al (2021) Percutaneous fetoscopic spina bifida repair: effect on need for postnatal cerebrospinal fluid diversion, ambulation and bladder catheterization. Ultrasound Obstet Gynecol. uog, Bd. 23658. https://doi.org/10.1002/uog.23658

    Book  Google Scholar 

  32. Verweij EJ, de Vries MC, Oldekamp EJ et al (2021) Fetoscopic myelomeningocoele closure: is the scientific evidence enough to challenge the gold standard for prenatal surgery? Prenat Diagn. pd, Bd. 5940. https://doi.org/10.1002/pd.5940

    Book  Google Scholar 

  33. Sanz Cortes M, Chmait RH, Lapa DA, et al (2021) Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol 225:678.e1–678.e11. https://doi.org/10.1016/j.ajog.2021.05.044

  34. Deprest J, Brady P, Nicolaides K et al (2014) Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial. Semin Fetal Neonatal Med 19:338–348. https://doi.org/10.1016/j.siny.2014.09.006

    Article  PubMed  Google Scholar 

  35. Deprest JA, Nicolaides KH, Benachi A et al (2021) Randomized trial of fetal surgery for severe left diaphragmatic hernia. N Engl J Med 385:107–118. https://doi.org/10.1056/NEJMoa2027030

    Article  PubMed  PubMed Central  Google Scholar 

  36. Deprest JA, Benachi A, Gratacos E et al (2021) Randomized trial of fetal surgery for moderate left diaphragmatic hernia. N Engl J Med 385:119–129. https://doi.org/10.1056/NEJMoa2026983

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Calster B, Benachi A, Nicolaides KH, et al (2022) The randomized Tracheal Occlusion To Accelerate Lung growth (TOTAL)-trials on fetal surgery for congenital diaphragmatic hernia: reanalysis using pooled data. Am J Obstet Gynecol 226:560.e1–560.e24. https://doi.org/10.1016/j.ajog.2021.11.1351

  38. Hellmund A, Berg C, Geipel A et al (2016) Prenatal diagnosis and evaluation of sonographic predictors for intervention and adverse outcome in congenital pulmonary airway malformation. PLoS ONE 11:e150474. https://doi.org/10.1371/journal.pone.0150474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Macardle CA, Ehrenberg-Buchner S, Smith EA, et al (2016) Surveillance of fetal lung lesions using the congenital pulmonary airway malformation volume ratio: natural history and outcomes: CVR-based surveillance of fetal lung malformations. Prenat Diagn 36:282–289. https://doi.org/10.1002/pd.4761

  40. Morris LM, Lim F‑Y, Livingston JC et al (2009) High-risk fetal congenital pulmonary airway malformations have a variable response to steroids. J Pediatr Surg 44:60–65. https://doi.org/10.1016/j.jpedsurg.2008.10.012

    Article  PubMed  Google Scholar 

  41. Derderian SC, Coleman AM, Jeanty C et al (2015) Favorable outcomes in high-risk congenital pulmonary airway malformations treated with multiple courses of maternal betamethasone. J Pediatr Surg 50:515–518. https://doi.org/10.1016/j.jpedsurg.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  42. Witlox RS, Lopriore E, Oepkes D (2011) Prenatal interventions for fetal lung lesions. Prenat Diagn 31:628–636. https://doi.org/10.1002/pd.2778

    Article  PubMed  Google Scholar 

  43. Peranteau WH, Adzick SN, Boelig MM et al (2015) Thoracoamniotic shunts for the management of fetal lung lesions and pleural effusions: a single-institution review and predictors of survival in 75 cases. J Pediatr Surg 50:301–305. https://doi.org/10.1016/j.jpedsurg.2014.11.019

    Article  PubMed  Google Scholar 

  44. Yong PJ, Von Dadelszen P, Carpara D et al (2012) Prediction of pediatric outcome after prenatal diagnosis and expectant antenatal management of congenital cystic adenomatoid malformation. Fetal Diagn Ther 31:94–102. https://doi.org/10.1159/000331936

    Article  PubMed  Google Scholar 

  45. Kunisaki SM, Ehrenberg-Buchner S, Dillman JR et al (2015) Vanishing fetal lung malformations: Prenatal sonographic characteristics and postnatal outcomes. J Pediatr Surg 50:978–982. https://doi.org/10.1016/j.jpedsurg.2015.03.025

    Article  PubMed  Google Scholar 

  46. Cavoretto P, Molina F, Poggi S et al (2008) Prenatal diagnosis and outcome of echogenic fetal lung lesions. Ultrasound Obstet Gynecol 32:769–783. https://doi.org/10.1002/uog.6218

    Article  CAS  PubMed  Google Scholar 

  47. Mallmann MR, Geipel A, Bludau M et al (2014) Bronchopulmonary sequestration with massive pleural effusion: pleuroamniotic shunting vs intrafetal vascular laser ablation. Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.13304

    Article  PubMed  Google Scholar 

  48. Cruz-Martinez R, Méndez A, Dueñas-Riaño J et al (2015) Fetal laser surgery prevents fetal death and avoids the need for neonatal sequestrectomy in cases with bronchopulmonary sequestration. Ultrasound Obstet Gynecol 46:627–628. https://doi.org/10.1002/uog.14921

    Article  CAS  PubMed  Google Scholar 

  49. Ruano R, de A Pimenta EJ, Marques da Silva M, et al (2007) Percutaneous intrauterine laser ablation of the abnormal vessel in pulmonary sequestration with hydrops at 29 weeks’ gestation. J Ultrasound Med 26:1235–1241

  50. Yang W, Gao Y, Li P, Eckman MH (2023) Should asymptomatic patients with congenital lung malformations undergo surgery? A decision analysis. Pediatr Pulmonol 58:449–456. https://doi.org/10.1002/ppul.26206

    Article  PubMed  Google Scholar 

  51. Smith RP, Illanes S, Denbow ML, Soothill PW (2005) Outcome of fetal pleural effusions treated by thoracoamniotic shunting: Fetal chest shunting. Ultrasound Obstet. Gynecol, Bd. 26, S 63–66 https://doi.org/10.1002/uog.1883

    Book  Google Scholar 

  52. Yinon Y, Grisaru-Granovsky S, Chaddha V et al (2010) Perinatal outcome following fetal chest shunt insertion for pleural effusion. Ultrasound Obstet Gynecol 36:58–64. https://doi.org/10.1002/uog.7507

    Article  CAS  PubMed  Google Scholar 

  53. Picone O, Benachi A, Mandelbrot L et al (2004) Thoracoamniotic shunting for fetal pleural effusions with hydrops. Am J Obstet Gynecol 191:2047–2050. https://doi.org/10.1016/j.ajog.2004.05.016

    Article  PubMed  Google Scholar 

  54. Aubard Y, Derouineau I, Aubard V et al (1998) Primary fetal hydrothorax: A literature review and proposed antenatal clinical strategy. Fetal Diagn Ther 13:325–333. https://doi.org/10.1159/000020863

    Article  CAS  PubMed  Google Scholar 

  55. Walter A, Strizek B, Weber EC et al (2022) Intrauterine Valvuloplasty in severe aortic stenosis—a ten years single center experience. JCM 11:3058. https://doi.org/10.3390/jcm11113058

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gottschalk I, Strizek B, Menzel T et al (2019) Severe pulmonary stenosis or atresia with intact ventricular septum in the fetus: The natural history. Fetal Diagn Ther. https://doi.org/10.1159/000502178

    Article  PubMed  Google Scholar 

  57. Tulzer A, Arzt W, Gitter R et al (2018) Immediate effects and outcome of in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact ventricular septum or critical pulmonary stenosis. Ultrasound Obstet Gynecol 52:230–237. https://doi.org/10.1002/uog.19047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chalouhi GE, Morency A, De Vlieger R et al (2017) Prenatal incision of ureterocele causing bladder outlet obstruction: a multicenter case series. Prenat Diagn 37:968–974. https://doi.org/10.1002/pd.5091

    Article  PubMed  Google Scholar 

  59. Strizek B, Gottschalk I, Recker F et al (2020) Vesicoamniotic shunting for fetal megacystis in the first trimester with a Somatex® intrauterine shunt. Arch Gynecol Obstet 302:133–140. https://doi.org/10.1007/s00404-020-05598-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morris RK, Malin GL, Quinlan-Jones E et al (2013) The Percutaneous shunting in Lower Urinary Tract Obstruction (PLUTO) study and randomised controlled trial: evaluation of the effectiveness, cost-effectiveness and acceptability of percutaneous vesicoamniotic shunting for lower urinary tract obstruction. Health Technol Assess 17:1–232. https://doi.org/10.3310/hta17590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gottschalk I, Berg C, Menzel T et al (2023) Single-center outcome analysis of 46 fetuses with megacystis after intrauterine vesico-amniotic shunting with the Somatex®intrauterine shunt. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-022-06905-6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Strizek B, Spicher T, Gottschalk I et al (2022) Vesicoamniotic Shunting before 17 + 0 Weeks in Fetuses with Lower Urinary Tract Obstruction (LUTO): Comparison of Somatex vs. Harrison Shunt Systems. J Clin Med 11:2359. https://doi.org/10.3390/jcm11092359

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kohaut J, Fischer-Mertens J, Cernaianu G et al (2023) Postnatal surgical treatment and complications following intrauterine vesicoamniotic shunting with the SOMATEX® intrauterine shunt. A single center experience. J Pediatr Urol 19(567):e1–567.e6. https://doi.org/10.1016/j.jpurol.2023.06.027

    Article  Google Scholar 

  64. Ruano R, Duarte S, Bunduki V et al (2010) Fetal cystoscopy for severe lower urinary tract obstruction—initial experience of a single center. Prenat Diagn 30:30–39. https://doi.org/10.1002/pd.2418

    Article  PubMed  Google Scholar 

  65. Miller JL, Baschat AA, Rosner M, et al (2023) Neonatal survival after serial amnioinfusions for bilateral renal agenesis: The Renal Anhydramnios Fetal Therapy Trial. JAMA 330:2096. https://doi.org/10.1001/jama.2023.21153

  66. Weber E, Recker F, Strizek B et al (2020) Fetoskopische Therapie einer kongenitalen Megalourethra. Frauenarzt: 42–43

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Berg.

Ethics declarations

Interessenkonflikt

E.C. Weber, I. Gottschalk, I. Bedei und C. Berg geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Andreas Schröer, Berlin

Jan Weichert, Lübeck

Ulrich Gembruch, Bonn

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, E.C., Gottschalk, I., Bedei, I. et al. Intrauterine Therapie – wie ist der Stand der Dinge?. Gynäkologie (2024). https://doi.org/10.1007/s00129-024-05231-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00129-024-05231-z

Schlüsselwörter

Keywords

Navigation