Skip to main content
Log in

Familiärer Brust- und Eierstockkrebs – Prävention und Therapie

Familial breast and ovarian cancer—Prevention and treatment

  • Leitthema
  • Published:
Die Gynäkologie Aims and scope

Zusammenfassung

Bei über 20 % aller Indexpatientinnen, welche die Kriterien des Deutschen Konsortiums Familiärer Brust- und Eierstockkrebs (DK) für die Keimbahnuntersuchung erfüllen, werden wahrscheinlich pathogene/pathogene Varianten (PV) in bekannten Risikogenen identifiziert. Bei Nachweis einer PV kann gesunden Frauen einer Familie eine prädiktive Untersuchung angeboten werden. Zunehmend finden im Zuge der personalisierten Medizin auch weitere genetische („polygenic risk scores“, PRSs) und nichtgenetische Risikofaktoren Beachtung (Lebensstil, hormonelle und reproduktive Faktoren, mammographische Dichte), die das individuelle Erkrankungsrisiko erheblich modulieren können. Dadurch wird eine personalisierte Risikoprädiktion möglich. Bei Frauen ohne Krebserkrankung kann das Angebot einer risikoadaptierten Prävention (Teilnahme an der intensivierten Brustkrebsfrüherkennung) dem individuellen Risiko angepasst werden. Die individualisierte Prävention erfordert prospektive Kohortenstudien, um einen Nutzen für Ratsuchende zu evaluieren. Die Analysen sollten daher in ein wissengenerierendes Dokumentations- und Evaluationskonzept eingebettet sein. Um der gestiegenen Komplexität zu begegnen, wurden für Betroffene verschiedene Informationsmaterialien in Einfacher bzw. Leichter Sprache entwickelt. Außerdem unterstützen Entscheidungshilfen und ein Entscheidungscoaching Frauen mit pathogenen Varianten in den Genen BRCA1 und BRCA2 bei der Entscheidungsfindung hinsichtlich präventiver Maßnahmen.

Abstract

In more than 25% of all index patients who fulfil the criteria of the German Consortium of Familial Breast and Ovarian Cancer (DK) for germline testing, possible pathogenic or pathogenic germline variants (PV) in known risk genes are identified. If a germline PV is detected healthy women in a family can be offered predictive testing. In the course of personalized medicine other genetic (polygenic risk scores, PRS) and nongenetic risk factors (lifestyle, hormonal and reproductive factors, mammographic density) are increasingly receiving attention, which can significantly modulate the individual risk of disease. In this way a personalized risk prediction is possible. In healthy women the offer of risk-adapted prevention (participation in an intensified breast cancer screening) can be adjusted to the individual risk. The individualized prevention requires prospective cohort studies to evaluate a benefit for women seeking advice. The analyses should therefore be embedded in a knowledge-generating documentation and evaluation concept. Various materials for those affected have been developed in simple or plain language to address the increased complexity. In addition, patient decision aids and decision coaching support carriers of PVs in the BRCA1 and BRCA2 genes in making decisions with respect to preventive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Antoniou AC, Cunningham AP, Peto J et al (2008) The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 98:1457–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bick U, Engel C, Krug B et al (2019) High-risk breast cancer surveillance with MRI: 10-year experience from the German consortium for hereditary breast and ovarian cancer. Breast Cancer Res Treat 175:217–228

    PubMed  Google Scholar 

  3. Borde J, Ernst C, Wappenschmidt B et al (2021) Performance of breast cancer polygenic risk scores in 760 female CHEK2 germline mutation carriers. J Natl Cancer Inst 113:893–899

    PubMed  Google Scholar 

  4. Breast Cancer Association C, Dorling L, Carvalho S et al (2021) Breast cancer risk genes—association analysis in more than 113,000 women. N Engl J Med 384:428–439

    Google Scholar 

  5. Carbine NE, Lostumbo L, Wallace J et al (2018) Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst Rev 4:CD2748

    PubMed  Google Scholar 

  6. Dareng EO, Tyrer JP, Barnes DR et al (2022) Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur J Hum Genet

  7. Dominguez-Valentin M, Sampson JR, Seppälä TT et al (2020) Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch SyndromeDatabase. Genet Med 22:15–25

    CAS  PubMed  Google Scholar 

  8. Easton DF, Pharoah PD, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med

  9. Engel C, Loeffler M, Steinke V et al (2012) Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol 30:4409–4415

    PubMed  Google Scholar 

  10. Engel C, Rhiem K, Hahnen E et al (2018) Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history. BMC cancer 18:265

    PubMed  PubMed Central  Google Scholar 

  11. Robert Koch-Institut (2021) Krebs in Deutschland für 2017/2018 (13. Ausgabe). In: Robert Koch-Institut (Hrsg) die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. Berlin, Germany

    Google Scholar 

  12. Gallagher S, Hughes E, Wagner S et al (2020) Association of a polygenic risk score with breast cancer among women carriers of high- and moderate-risk breast cancer genes. JAMA Netw Open 3:e208501

    PubMed  PubMed Central  Google Scholar 

  13. Hauke J, Horvath J, Gross E et al (2018) Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med 7:1349–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Heemskerk-Gerritsen BAM, Jager Koppert A, Koppert LB et al (2019) Survival after bilateral risk-reducing mastectomy in healthy BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 177:723–733

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Isselhard A, Töpper M, Berger-Höger B et al (2020) Implementation and evaluation of a nurse-led decision-coaching program for healthy breast cancer susceptibility gene (BRCA1/2) mutation carriers: a study protocol for the randomized controlled EDCP-BRCA study. Trials 21(1):501. https://doi.org/10.1186/s13063-020-04431-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kast K, Rhiem K, Wappenschmidt B et al (2016) Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 53:465–471

    CAS  PubMed  Google Scholar 

  17. Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402–2416

    CAS  PubMed  Google Scholar 

  18. Kuchenbaecker KB, Mcguffog L, Barrowdale D et al (2017) Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 109:

  19. Lee A, Mavaddat N, Cunningham AP et al (2022) Enhancing the BOADICEA cancer risk prediction model to incorporate new data on RAD51C, RAD51D, BARD1 updates to tumour pathology and cancer incidences. medRxiv:2022.2001.2027.22269825

  20. Lee A, Mavaddat N, Wilcox AN et al (2019) BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med 21:1708–1718

    PubMed  PubMed Central  Google Scholar 

  21. Lee A, Yang X, Tyrer J et al (2021) Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors. J Med Genet

  22. Li X, You R, Wang X et al (2016) Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res 22:3971–3981

    CAS  PubMed  Google Scholar 

  23. Lilyquist J, Laduca H, Polley E et al (2017) Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol Oncol 147:375–380

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lilyquist J, Ruddy KJ, Vachon CM et al (2018) Common genetic variation and breast cancer risk—past, present, and future. Cancer Epidemiol Biomarkers Prev 27:380–394

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mavaddat N, Antoniou AC, Mooij TM et al (2020) Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers. Breast Cancer Res 22:8

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mavaddat N, Ficorella L, Carver T et al (2023) Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model. Cancer Epidemiol Biomarkers Prev 32:422–427

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mavaddat N, Pharoah PD, Michailidou K et al (2015) Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst 107:

  28. Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414

    CAS  PubMed  Google Scholar 

  29. Michailidou K, Lindström S, Dennis J et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551:92

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Quante AS, Engel C, Kiechle M et al (2020) Umstrukturierung der Risikoberechnung für die intensivierte Früherkennung im Deutschen Konsortium für Brust- und Eierstockkrebs. Gynäkologe 53:259–264

    Google Scholar 

  31. Quante AS, Strahwald B, Fischer C et al (2018) Individualisiertes Brustkrebsrisiko – wie berechnen, wie bewerten und wie besprechen? Gynäkologe 51:397–402

    CAS  Google Scholar 

  32. Ramus SJ, Song H, Dicks E et al (2015) Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. JNCI J Natl Cancer Inst 107:

  33. Rhiem K, Zachariae S, Waha A et al (2023) Prevalence of Pathogenic Germline Variants in Women with Non-Familial Unilateral Triple-Negative Breast Cancer. Breast Care (Basel) 18(2):106–112. https://doi.org/10.1159/000528972

    Article  Google Scholar 

  34. Rhiem K, Bucker-Nott HJ, Hellmich M et al (2019) Benchmarking of a checklist for the identification of familial risk for breast and ovarian cancers in a prospective cohort. Breast J 25:455–460

    PubMed  Google Scholar 

  35. Rolfes M, Borde J, Möllenhoff K et al (2022) Prevalence of cancer predisposition Germline variants in Male breast cancer patients: results of the German consortium for hereditary breast and ovarian cancer. Cancers 14:

  36. Schmidt MK, Hogervorst F, Van Hien R et al (2016) Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol 34:2750–2760

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber-Lassalle N, Borde J, Weber-Lassalle K et al (2019) Germline loss-of-function variants in the BARD1 gene are associated with early-onset familial breast cancer but not ovarian cancer. Breast Cancer Res 21:55

    PubMed  PubMed Central  Google Scholar 

  38. Weber-Lassalle NHJ, Ramser J, Richters L, Groß E, Blümcke B, Gehrig A, Kahlert AK, Müller CR, Hackmann K, Honisch E, Weber-Lassalle K, Niederacher D, Borde J, Thiele H, Ernst C, Altmüller J, Neidhardt G, Nürnberg P, Klaschik K, Schroeder C, Platzer K, Volk E, Wang-Gohrke S, Just W, Auber B, Kubisch C, Schmidt G, Horvath J, Wappenschmidt B, Engel C, Arnold N, Dworniczak B, Rhiem K, Meindl A, Schmutzler RK, Hahnen E (2018) BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res

  39. Yang X, Leslie G, Doroszuk A et al (2020) Cancer risks associated with Germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol 38:674–685

    CAS  PubMed  Google Scholar 

  40. Yang X, Song H, Leslie G et al (2020) Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. JNCI J Natl Cancer Inst

  41. Mavaddat N, Michailidou K, Dennis J et al (2019) Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am J Hum Genet 104:21–34

    CAS  PubMed  Google Scholar 

  42. Kautz-Freimuth S, Redaèlli M, Shukri A et al (2023) Effectiveness of evidence-based decision aids for women with pathogenic BRCA1 or BRCA2 variants in the german health care context: results from a randomized controlled trial. BMC Med Inform Decis Mak 23(1):223. https://doi.org/10.1186/s12911-023-02327-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bosse K, Rhiem K, Wappenschmidt B et al (2006) Screening for ovarian cancer by transvaginal ultrasound and serum CA125 measurement in women with a familial predisposition: a prospective cohort study. Gynecol Oncol 103(3):1077–1082. https://doi.org/10.1016/j.ygyno.2006.06.032

    Article  CAS  PubMed  Google Scholar 

  44. Geyer CE Jr, Garber JE, Gelber RD et al (2022) Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann Oncol 33(12):1250–1268. https://doi.org/10.1016/j.annonc.2022.09.159

    Article  CAS  PubMed  Google Scholar 

  45. Robson ME, Im SA, Senkus E et al (2023) OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur J Cancer 184:39–47. https://doi.org/10.1016/j.ejca.2023.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Litton JK, Hurvitz SA, Mina LA et al (2020) Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann Oncol 31(11):1526–1535. https://doi.org/10.1016/j.annonc.2020.08.2098

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Rhiem.

Ethics declarations

Interessenkonflikt

K. Rhiem, A. Tüchler, R. Schmutzler und E. Hahnen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Tanja Fehm, Düsseldorf

Nicolai Maass, Kiel

Wolfgang Janni, Ulm

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Für diesen Beitrag wurden Textauszüge aus https://doi.org/10.1007/s00129-023-05163-0 verwendet.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhiem, K., Tüchler, A., Schmutzler, R. et al. Familiärer Brust- und Eierstockkrebs – Prävention und Therapie. Gynäkologie 57, 265–272 (2024). https://doi.org/10.1007/s00129-024-05222-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-024-05222-0

Schlüsselwörter

Keywords

Navigation