Skip to main content
Log in

Molekulare Klassifikation beim Endometriumkarzinom

Molecular classification of endometrial cancer

  • Leitthema
  • Published:
Die Gynäkologie Aims and scope

Zusammenfassung

Die von Bokhman et al. propagierte dualistische Subtypisierung stellte über mehrere Jahrzehnte das Fundament zur Prädiktion von Endometriumkarzinomen dar, das jedoch über die Jahre eine gewisse Unschärfe in Bezug auf Graduierung und Gesamtüberleben der Patientinnen aufwies. Molekulare Analysen identifizierten die Subgruppen POLE-ultramutiert, MMRd („mismatch repair deficient“), p53-mutiert und Endometriumkarzinome mit einem unspezifischen molekularen Profil. Die prädiktive Evidenz der molekularen Subgruppen und ihre Überlegenheit gegenüber dem von Bokhman et al. publizierten Modell, konnte durch mehrere Studien bestätigt werden. Im vorliegenden Übersichtsartikel werden anhand von 5 Fallbeispielen aus der Routinediagnostik die Typisierung von endometrioiden Adenokarzinomen und der zugehörige molekularpathologische Hintergrund beschrieben. Weiterhin wird im letzten Fallbeispiel eine sich aktuell noch nicht in der WHO(World Health Organization)-Klassifikation weiblicher Genitaltumoren genannte Subgruppe beschrieben.

Abstract

The dualistic subtyping propagated by Bokhman et al. provided the foundation for the prediction of endometrial cancer for several decades; however, over the years it has exhibited uncertainties in terms of tumor cell graduation and overall survival of patients. Molecular analyses identified the new subgroups POLE ultramutated, mismatch repair deficient (MMRd), p53 mutated, and endometrial cancer with an unspecific molecular profile. The predictive evidence of the molecular subgroups was confirmed by several studies and is significantly superior to the model published by Bokhman et al. In the present review article, the typing of endometrioid adenocarcinomas and the associated molecular pathological background are described based on five histopathological case examples from routine diagnostics. Furthermore, the last case report describes a subtype not yet included in the World Health Organization (WHO) classification of female genital tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Herrington CS (2020) Female genital tumours. https://www.research.ed.ac.uk/en/publications/who-classification-of-tumours-female-genital-tumours. Zugegriffen: 27. Okt. 2022

  2. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15(1):10–17. https://doi.org/10.1016/0090-8258(83)90111-7

    Article  CAS  PubMed  Google Scholar 

  3. Lajer H, Jensen MB, Kilsmark J et al (2010) The value of gynecologic cancer follow-up: evidence-based ignorance? Int J Gynecol Cancer 20(8):1. https://doi.org/10.1111/IGC.0B013E3181F3BEE0

    Article  Google Scholar 

  4. Stelloo E, Nout RA, Osse EM et al (2016) Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer-combined analysis of the PORTEC cohorts. Clin Cancer Res 22(16):4215–4224. https://doi.org/10.1158/1078-0432.CCR-15-2878

    Article  CAS  PubMed  Google Scholar 

  5. Getz G, Gabriel SB, Cibulskis K et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73. https://doi.org/10.1038/NATURE12113

    Article  CAS  Google Scholar 

  6. Kunkel TA, Sabatino RD, Bambara RA (1987) Exonucleolytic proofreading by calf thymus DNA polymerase delta. Proc Natl Acad Sci U S A 84(14):4865–4869. https://doi.org/10.1073/PNAS.84.14.4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsurimoto T, Stillman B (1991) Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase α and 6 during initiation of leading and lagging strand synthesis. J Biol Chem 266(3):1961–1968. https://doi.org/10.1016/s0021-9258(18)52386-3

    Article  CAS  PubMed  Google Scholar 

  8. Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346(6284):534–539. https://doi.org/10.1038/346534A0

    Article  CAS  PubMed  Google Scholar 

  9. Tsurimoto T, Stillman B (1991) Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 266(3):1950–1960. https://doi.org/10.1016/s0021-9258(18)52385-1

    Article  CAS  PubMed  Google Scholar 

  10. Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase 6 in replication of both the leading and lagging DNA strands. Mol Cell 59(2):163–175. https://doi.org/10.1016/J.MOLCEL.2015.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Church DN, Briggs SEW, Palles C et al (2013) DNA polymerase ε and 6 exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22(14):2820–2828. https://doi.org/10.1093/HMG/DDT131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Gool IC, Ubachs JEH, Stelloo E et al (2018) Blinded histopathological characterisation of POLE exonuclease domain-mutant endometrial cancers: sheep in wolf’s clothing. Histopathology 72(2):248–258. https://doi.org/10.1111/HIS.13338

    Article  PubMed  Google Scholar 

  13. Meng B, Hoang LN, McIntyre JB et al (2014) POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol 134(1):15–19. https://doi.org/10.1016/J.YGYNO.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  14. Church DN, Stelloo E, Nout RA et al (2014) Prognostic significance of POLE proofreading mutations in endometrial cancer. J Natl Cancer Inst. https://doi.org/10.1093/JNCI/DJU402

    Article  PubMed  PubMed Central  Google Scholar 

  15. Linzer DIH, Levine AJ (1979) Characterization tumor antigen and uninfected of a54K Dalton cellular SV40 present in SV40-transformed cells. Cell 17(1):43–52

    Article  CAS  PubMed  Google Scholar 

  16. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16. https://doi.org/10.1038/358015A0

    Article  CAS  PubMed  Google Scholar 

  17. Royds JA, Iacopetta B (2006) p53 and disease: when the guardian angel fails. Cell Death Differ 13(6):1017–1026. https://doi.org/10.1038/SJ.CDD.4401913

    Article  CAS  PubMed  Google Scholar 

  18. Thomas AF, Kelly GL, Strasser A (2022) Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 29(5):961–971. https://doi.org/10.1038/S41418-022-00996-Z

    Article  CAS  PubMed  Google Scholar 

  19. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 25(1):104–113. https://doi.org/10.1038/CDD.2017.169

    Article  CAS  PubMed  Google Scholar 

  20. Yonish-Rouach E, Resnftzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin‑6. Nature 352(6333):345–347. https://doi.org/10.1038/352345A0

    Article  CAS  PubMed  Google Scholar 

  21. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 89(10):4495–4499. https://doi.org/10.1073/PNAS.89.10.4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316. https://doi.org/10.1038/NCB2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825. https://doi.org/10.1016/0092-8674(93)90500-P

    Article  CAS  PubMed  Google Scholar 

  24. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283. https://doi.org/10.1038/NRM2147

    Article  CAS  PubMed  Google Scholar 

  25. Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26(12):1268–1286. https://doi.org/10.1101/GAD.190678.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oren M (1999) Regulation of the p53 tumor suppressor protein. J Biol Chem 274(51):36031–36034. https://doi.org/10.1074/JBC.274.51.36031

    Article  CAS  PubMed  Google Scholar 

  27. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27. https://doi.org/10.1016/S0014-5793(97)01480-4

    Article  CAS  PubMed  Google Scholar 

  28. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299. https://doi.org/10.1038/387296A0

    Article  CAS  PubMed  Google Scholar 

  29. Kawai H, Wiederschain D, Yuan ZM (2003) Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 23(14):4939–4947. https://doi.org/10.1128/MCB.23.14.4939-4947.2003/FORMAT/EPUB

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275(12):8945–8951. https://doi.org/10.1074/JBC.275.12.8945

    Article  CAS  PubMed  Google Scholar 

  31. Stenger JE, Mayr GA, Mann K, Tegtmeyer P (1992) Formation of stable p53 homotetramers and multiples of tetramers. Mol Carcinog 5(2):102–106. https://doi.org/10.1002/MC.2940050204

    Article  CAS  PubMed  Google Scholar 

  32. PubMed New insights into p53 function from structural studies. https://pubmed.ncbi.nlm.nih.gov/8622853/. Zugegriffen: 21. Okt. 2022

  33. Enoch T, Norbury C (1995) Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20(10):426–430. https://doi.org/10.1016/S0968-0004(00)89093-3

    Article  CAS  PubMed  Google Scholar 

  34. Horeweg N, de Bruyn M, Nout RA et al (2020) Prognostic integrated image-based immune and molecular profiling in early-stage endometrial cancer. Cancer Immunol Res 8(12):1508–1519. https://doi.org/10.1158/2326-6066.CIR-20-0149

    Article  CAS  PubMed  Google Scholar 

  35. Ross DS, Devereaux KA, Jin C et al (2022) Histopathologic features and molecular genetic landscape of HER2-amplified endometrial carcinomas. Mod Pathol 35(7):962–971. https://doi.org/10.1038/S41379-021-00997-2

    Article  CAS  PubMed  Google Scholar 

  36. AWMF (2022) S3-Leitlinie Endometriumkarzinom Leitlinie (Langversion ) Wesentliche Neuerungen

    Google Scholar 

  37. Kunkel TA (2009) Evolving views of DNA replication (in)fidelity. Cold Spring Harb Symp Quant Biol 74:91–101. https://doi.org/10.1101/SQB.2009.74.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bębenek A, Ziuzia-Graczyk I (2018) Fidelity of DNA replication—a matter of proofreading. Curr Genet 64(5):985–996. https://doi.org/10.1007/S00294-018-0820-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tiraby JG, Fox MS (1973) Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci U S A 70(12):3541–3545. https://doi.org/10.1073/PNAS.70.12.3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. https://doi.org/10.1146/ANNUREV.BIOCHEM.73.011303.073723

    Article  CAS  PubMed  Google Scholar 

  41. PubMed The role of mismatch repair in DNA damage-induced apoptosis. https://pubmed.ncbi.nlm.nih.gov/10821533/. Zugegriffen: 24. Okt. 2022

  42. Hoeijmakers JHJ (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374. https://doi.org/10.1038/35077232

    Article  CAS  PubMed  Google Scholar 

  43. Kolodner RD, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89–96. https://doi.org/10.1016/S0959-437X(99)80013-6

    Article  CAS  PubMed  Google Scholar 

  44. Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133. https://doi.org/10.1146/ANNUREV.BI.65.070196.000533

    Article  CAS  PubMed  Google Scholar 

  45. Lyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106(2):302–323. https://doi.org/10.1021/CR0404794

    Article  Google Scholar 

  46. Vaksman Z, Garner HR (2015) Somatic microsatellite variability as a predictive marker for colorectal cancer and liver cancer progression. Oncotarget 6(8):5760–5771. https://doi.org/10.18632/ONCOTARGET.3306

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561. https://doi.org/10.1038/363558A0

    Article  CAS  PubMed  Google Scholar 

  48. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7(5):335–346. https://doi.org/10.1038/NRM1907

    Article  CAS  PubMed  Google Scholar 

  49. Umar A, Boyer JC, Thomas DC et al (1994) Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J Biol Chem 269(20):14367–14370. https://doi.org/10.1016/S0021-9258(17)36630-9

    Article  CAS  PubMed  Google Scholar 

  50. Helland Å, Børresen-Dale AL, Peltomäki P et al (1997) Microsatellite instability in cervical and endometrial carcinomas. Int J Cancer 70(5):499–501. https://doi.org/10.1002/(SICI)1097-0215(19970304)70:5<499::AID-IJC1>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  51. McMeekin DS, Tritchler DL, Cohn DE et al (2016) Clinicopathologic significance of mismatch repair defects in endometrial cancer: an NRG oncology/gynecologic oncology group study. J Clin Oncol 34(25):3062–3068. https://doi.org/10.1200/JCO.2016.67.8722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loukovaara M, Pasanen A, Bützow R (2021) Mismatch repair protein and MLH1 methylation status as predictors of response to adjuvant therapy in endometrial cancer. Cancer Med 10(3):1034–1042. https://doi.org/10.1002/CAM4.3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marabelle A, Fakih M, Lopez J et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21(10):1353–1365. https://doi.org/10.1016/S1470-2045(20)30445-9

    Article  CAS  PubMed  Google Scholar 

  54. Pasanen A, Ahvenainen T, Pellinen T, Vahteristo P, Loukovaara M, Bützow R (2020) PD-L1 expression in endometrial carcinoma cells and Intratumoral immune cells: differences across histologic and TCGA-based molecular subgroups. Am J Surg Pathol 44(2):174–181. https://doi.org/10.1097/PAS.0000000000001395

    Article  PubMed  Google Scholar 

  55. Kommoss S, McConechy MK, Kommoss F et al (2018) Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann Oncol 29(5):1180–1188. https://doi.org/10.1093/ANNONC/MDY058

    Article  CAS  PubMed  Google Scholar 

  56. Raffone A, Travaglino A, Mascolo M et al (2020) Histopathological characterization of ProMisE molecular groups of endometrial cancer. Gynecol Oncol 157(1):252–259. https://doi.org/10.1016/J.YGYNO.2020.01.008

    Article  PubMed  Google Scholar 

  57. Horn LC, Höhn AK, Krücken I, Stiller M, Obeck U, Brambs CE (2020) Mesonephric-like adenocarcinomas of the uterine corpus: report of a case series and review of the literature indicating poor prognosis for this subtype of endometrial adenocarcinoma. J Cancer Res Clin Oncol 146(4):971–983. https://doi.org/10.1007/S00432-019-03123-7

    Article  CAS  PubMed  Google Scholar 

  58. Travaglino A, Raffone A, Mascolo M et al (2020) TCGA molecular subgroups in endometrial undifferentiated/dedifferentiated carcinoma. Pathol Oncol Res 26(3):1411–1416. https://doi.org/10.1007/S12253-019-00784-0

    Article  CAS  PubMed  Google Scholar 

  59. de Freitas D, Aguiar FN, Anton C, Bacchi CE, Carvalho JP, Carvalho FM (2018) L1 cell adhesion molecule (L1CAM) expression in endometrioid endometrial carcinomas: a possible pre-operative surrogate of lymph vascular space invasion. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0209294

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kommoss FKF, Karnezis AN, Kommoss F et al (2018) L1CAM further stratifies endometrial carcinoma patients with no specific molecular risk profile. Br J Cancer 119(4):480–486. https://doi.org/10.1038/S41416-018-0187-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Djabali M, Mattei MG, Nguyen C et al (1990) The gene encoding L1, a neural adhesion molecule of the immunoglobulin family, is located on the X chromosome in mouse and man. Genomics 7(4):587–593. https://doi.org/10.1016/0888-7543(90)90203-7

    Article  CAS  PubMed  Google Scholar 

  62. Stelloo E, Bosse T, Nout RA et al (2015) Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Mod Pathol 28(6):836–844. https://doi.org/10.1038/MODPATHOL.2015.43

    Article  CAS  PubMed  Google Scholar 

  63. León-Castillo A, Britton H, McConechy MK et al (2020) Interpretation of somatic POLE mutations in endometrial carcinoma. J Pathol 250(3):323–335. https://doi.org/10.1002/PATH.5372

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Timme.

Ethics declarations

Interessenkonflikt

P. Bronsert, K. Kurowski, M. Werner, C. Unger und S. Timme geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Ricardo Felberbaum, Kempten

Johannes Ettl, Kempten

Konrad Aumann, Kempten

Christian Langer, Kempten

Marion Kiechle, München

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronsert, P., Kurowski, K., Werner, M. et al. Molekulare Klassifikation beim Endometriumkarzinom. Gynäkologie 56, 164–175 (2023). https://doi.org/10.1007/s00129-023-05056-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-023-05056-2

Schlüsselwörter

Keywords

Navigation