Skip to main content
Log in

Tumor genetics and individualized therapy

Tumorgenetik und personalisierte Therapie

  • Leitthema
  • Published:
Die Gynäkologie Aims and scope

Abstract

Efforts to translate information from sequencing-based tumor genetic characterization into treatment personalization are becoming widespread in the clinic. However, for them to be successful and consequently lead to improved treatment outcomes, familiarity with predictive biomarkers and the associated treatment landscape is mandatory. The purpose of this review is to provide a structured overview of established biomarkers and associated genetic alterations ranging from single-gene to complex biomarkers, as well as to summarize the presently available clinical evidence on their predictive value with respect to currently approved targeted therapies in advanced breast and gynecologic malignancies. Importantly, apart from predicting response, sequencing-derived biomarkers can also inform on the lack of benefit from or even resistance to certain targeted therapies. In addition to providing an overview on how tumor genetics can guide selection of targeted therapies within their approved indication, this review also provides biomarker examples and related evidence which could suggest their potential off-label use, particularly in situations where tumor sequencing reveals a potentially actionable alteration but no other satisfactory treatment options remain. Moreover, another practical consequence of tumor sequencing for clinicians is that it can also facilitate and expedite access of patients to innovative treatment options within clinical trials, as it can be used as a powerful tool for patient stratification, especially for genomically driven and biomarker-stratified trials. In conclusion, all of the above illustrate the transformative potential and impact that tumor molecular profiling is having on the clinical management of advanced breast and gynecologic malignancies.

Zusammenfassung

Die genetische Charakterisierung von Tumoren durch Sequencing nimmt zunehmend Eingang in die Klinik als personalisierte Medizin. Um aber diese Techniken erfolgreich für die Behandlung einsetzen zu können, sind gute Kenntnisse über prädiktive Biomarker und die daraus ableitbaren Behandlungsstrategien unumgänglich. In der vorliegenden Arbeit werden deshalb die Zusammenhänge zwischen genetischer Tumorcharakterisierung und etablierten prädiktiven Biomarkern dargestellt. Außerdem wird auf ihre prädiktive Bedeutung für bereits klinisch verwendete Targettherapien insbesondere bei fortgeschrittenen Mammakarzinomen und anderen gynäkologischen Malignomen eingegangen. Darüber hinaus können genetische Signaturen nicht nur als prädiktive Biomarker eingesetzt werden, sondern auch helfen, die Wirksamkeit neuer Therapien zu bewerten. Auch können sich aus dieser genetischen Diagnostik neue Behandlungsmöglichkeiten mit Medikamenten im „off-label use“ ergeben, wenn keine anderen etablierten Behandlungsverfahren mehr eingesetzt werden können. Eine genetische Tumorcharakterisierung kann Patienten auch den Zugang zu neuen Therapiestudien eröffnen, da die Tumorgenetik neue Wege der Stratifizierung insbesondere in Studien, die gezielt nach genetischen Befunden stratifizieren, ermöglicht. So bietet eine molekulargenetische Charakterisierung von Tumoren zahlreiche neue Ansätze für die Onkologie weg von einer ausschließlich organbezogenen Betrachtungsweise hin zu einer Tumorklassifizierung basierend auf genetischen Mustern. Damit wird das transformative Potenzial und der Einfluss des molekularen Profilings von Tumoren in Bezug auf die klinische Versorgung fortgeschrittener Mammakarzinome und anderer gynäkologischer Malignome veranschaulicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    PubMed  PubMed Central  Google Scholar 

  2. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (2020) Pan-cancer analysis of whole genomes. Nature 578:82–93

    Google Scholar 

  3. Horak P, Klink B, Heining C et al (2017) Precision oncology based on omics data: the NCT Heidelberg experience. Int J Cancer 141:877–886

    CAS  PubMed  Google Scholar 

  4. Kaufman B, Shapira-Frommer R, Schmutzler RK et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33:244–250

    CAS  PubMed  Google Scholar 

  5. Lightfoot M, Montemorano L, Bixel K (2020) PARP inhibitors in gynecologic cancers: what is the next big development? Curr Oncol Rep 22:29

    PubMed  Google Scholar 

  6. Robson M, Im SA, Senkus E et al (2017) Olaparib for metastatic breast cancer in patients with a Germline BRCA mutation. N Engl J Med 377:523–533

    CAS  PubMed  Google Scholar 

  7. Litton JK, Rugo HS, Ettl J et al (2018) Talazoparib in patients with advanced breast cancer and a Germline BRCA mutation. N Engl J Med 379:753–763

    CAS  PubMed  Google Scholar 

  8. González-Martín A, Pothuri B, Vergote I et al (2019) Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 381:2391–2402

    PubMed  Google Scholar 

  9. Coleman RL, Oza AM, Lorusso D et al (2017) Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1949–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tutt ANJ, Garber JE, Kaufman B et al (2021) Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med 384:2394–2405

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Swisher EM, Kwan TT, Oza AM et al (2021) Molecular and clinical determinants of response and resistance to rucaparib for recurrent ovarian cancer treatment in ARIEL2 (Parts 1 and 2). Nat Commun 12:2487

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tung NM, Robson ME, Ventz S et al (2020) TBCRC 048: phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. J Clin Oncol 38:4274–4282

    CAS  PubMed  Google Scholar 

  13. Bertucci F, Ng CKY, Patsouris A et al (2019) Genomic characterization of metastatic breast cancers. Nature 569:560–564

    CAS  PubMed  Google Scholar 

  14. André F, Ciruelos EM, Juric D et al (2021) Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR‑1. Ann Oncol 32:208–217

    PubMed  Google Scholar 

  15. Rugo HS, Lerebours F, Ciruelos E et al (2021) Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol 22:489–498

    CAS  PubMed  Google Scholar 

  16. Rugo HS, Neven P, Saffie I et al (2021) Alpelisib + fulvestrant in patients with PIK3CA-mutated, HR+, HER2- advanced breast cancer (ABC) who received chemotherapy or endocrine therapy (ET) as immediate prior treatment: BYLieve Cohort C primary results and exploratory biomarker analyses. SABCS 2021 Abstract #PD13-05

    Google Scholar 

  17. Sharma P, Abramson VG, O’dea A et al (2021) Clinical and biomarker results from phase I/II study of PI3K inhibitor alpelisib plus nab-paclitaxel in HER2-negative metastatic breast cancer. Clin Cancer Res 27:3896–3904

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kandoth C, Schultz N, Cherniack AD et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73

    PubMed  Google Scholar 

  19. Ojesina AI, Lichtenstein L, Freeman SS et al (2014) Landscape of genomic alterations in cervical carcinomas. Nature 506:371–375

    CAS  PubMed  Google Scholar 

  20. Rinne N, Christie EL, Ardasheva A et al (2021) Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. CDR 4:573–595

    CAS  Google Scholar 

  21. Juric D, Rodon J, Tabernero J et al (2018) Phosphatidylinositol 3‑Kinase α‑selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: results from the first-in-human study. J Clin Oncol 36:1291–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hortobagyi GN, Chen D, Piccart M et al (2016) Correlative analysis of genetic alterations and everolimus benefit in hormone receptor-positive, human epidermal growth factor receptor 2‑negative advanced breast cancer: results from BOLERO‑2. J Clin Oncol 34:419–426

    CAS  PubMed  Google Scholar 

  23. André F, Hurvitz S, Fasolo A et al (2016) Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2‑overexpressing metastatic breast cancers: combined exploratory Biomarker analysis from BOLERO‑1 and BOLERO‑3. J Clin Oncol 34:2115–2124

    PubMed  Google Scholar 

  24. Basho RK, Gilcrease M, Murthy RK et al (2017) Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with Liposomal Doxorubicin and Bevacizumab. JAMA Oncol 3:509–515

    PubMed  Google Scholar 

  25. Hyman DM, Piha-Paul SA, Won H et al (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189–194

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oaknin A, Friedman CF, Roman LD et al (2020) Neratinib in patients with HER2-mutant, metastatic cervical cancer: findings from the phase 2 SUMMIT basket trial. Gynecol Oncol 159:150–156

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jhaveri K, Park H, Waisman J et al (2021) Neratinib + fulvestrant + trastuzumab for hormone receptor-positive, HER2-mutant metastatic breast cancer and neratinib + trastuzumab for triple-negative disease: latest updates from the SUMMIT trial. SABCS 2021 Abstract #GS4-10

    Google Scholar 

  28. Westphalen CB, Krebs MG, Le Tourneau C et al (2021) Genomic context of NTRK1/2/3 fusion-positive tumours from a large real-world population. NPJ Precis Oncol 5:69

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Doebele RC, Drilon A, Paz-Ares L et al (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:271–282

    CAS  PubMed  Google Scholar 

  30. Hong DS, Dubois SG, Kummar S et al (2020) Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 21:531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosen EY, Italiano A, Juric D et al (2020) Efficacy and safety of larotrectinib in patients with TRK fusion breast cancer. SABCS 2020 Abstract #PS11-06

    Google Scholar 

  32. Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD‑1 inhibition. N Engl J Med 377:2500–2501

    PubMed  PubMed Central  Google Scholar 

  33. Marabelle A, Fakih M, Lopez J et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21:1353–1365

    CAS  PubMed  Google Scholar 

  34. Klempner SJ, Fabrizio D, Bane S et al (2020) Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. The Oncol 25:e147–e159

    Google Scholar 

  35. Mcgrail DJ, Pilié PG, Rashid NU et al (2021) High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 32:661–672

    CAS  PubMed  Google Scholar 

  36. Rousseau B, Foote MB, Maron SB et al (2021) The spectrum of benefit from checkpoint blockade in hypermutated tumors. N Engl J Med 384:1168–1170

    PubMed  PubMed Central  Google Scholar 

  37. Barroso-Sousa R, Keenan TE, Pernas S et al (2020) Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res 26:2565–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Friedman CF, Hainsworth JD, Kurzrock R et al (2021) Atezolizumab treatment of tumors with high tumor mutational burden from mypathway, a multicenter, open-label, phase IIa multiple basket study. Cancer Discov 12:654–669. https://doi.org/10.1158/2159-8290.CD-21-0450

    Article  Google Scholar 

  39. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD‑1 blockade. Science 357:409–413

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marabelle A, Le DT, Ascierto PA et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38:1–10

    CAS  PubMed  Google Scholar 

  41. O’malley DM, Bariani GM, Cassier PA et al (2022) Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 study. J Clin Oncol 40:752–761

    PubMed  Google Scholar 

  42. Pellegrino B, Mateo J, Serra V et al (2019) Controversies in oncology: are genomic tests quantifying homologous recombination repair deficiency (HRD) useful for treatment decision making? ESMO Open 4:e480

    PubMed  PubMed Central  Google Scholar 

  43. Telli ML, Timms KM, Reid J et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22:3764–3773

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ray-Coquard I, Pautier P, Pignata S et al (2019) Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 381:2416–2428

    CAS  PubMed  Google Scholar 

  45. Tutt A, Tovey H, Cheang MCU et al (2018) Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 24:628–637

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin KK, Harrell MI, Oza AM et al (2019) BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov 9:210–219

    CAS  PubMed  Google Scholar 

  47. Waks AG, Cohen O, Kochupurakkal B et al (2020) Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Ann Oncol 31:590–598

    CAS  PubMed  Google Scholar 

  48. Weigelt B, Comino-Méndez I, De Bruijn I et al (2017) Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin Cancer Res 23:6708–6720

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tobalina L, Armenia J, Irving E et al (2021) A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol 32:103–112

    CAS  PubMed  Google Scholar 

  50. Pettitt SJ, Frankum JR, Punta M et al (2020) Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov 10:1475–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brett JO, Spring LM, Bardia A et al (2021) ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res 23:85

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fribbens C, O’leary B, Kilburn L et al (2016) Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol 34:2961–2968

    CAS  PubMed  Google Scholar 

  53. Gaillard SL, Andreano KJ, Gay LM et al (2019) Constitutively active ESR1 mutations in gynecologic malignancies and clinical response to estrogen-receptor directed therapies. Gynecol Oncol 154:199–206

    CAS  PubMed  Google Scholar 

  54. Spoerke JM, Gendreau S, Walter K et al (2016) Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun 7:11579

    PubMed  PubMed Central  Google Scholar 

  55. Bidard FC, Hardy-Bessard AC, Bachelot T et al (2021) Fulvestrant-palbociclib vs continuing aromatase inhibitor-palbociclib upon detection of circulating ESR1 mutation in HR+ HER2- metastatic breast cancer patients: results of PADA‑1, a UCBG-GINECO randomized phase 3 trial. SABCS 2021 Abstract #GS3-05

    Google Scholar 

  56. Chandarlapaty S, Chen D, He W et al (2016) Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO‑2 clinical trial. JAMA Oncol 2:1310–1315

    PubMed  PubMed Central  Google Scholar 

  57. Li Z, Razavi P, Li Q et al (2018) Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cells 34:893–905.e898

    Google Scholar 

  58. Formisano L, Lu Y, Servetto A et al (2019) Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun 10:1373

    PubMed  PubMed Central  Google Scholar 

  59. Drago JZ, Formisano L, Juric D et al (2019) FGFR1 amplification mediates endocrine resistance but retains TORC sensitivity in metastatic hormone receptor-positive (HR(+)) breast cancer. Clin Cancer Res 25:6443–6451

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Velimirovic M, Gerratana L, Davis AA et al (2021) Genomic predictors of rapid progression to first line endocrine and CDK4/6 inhibitor combination therapy in patients with estrogen receptor positive (ER+) HER‑2 negative (HER2-) advanced breast cancer (ABC). SABCS 2021 Abstract #P2-07-02

    Google Scholar 

  61. Wander SA, Han HS, Zangardi ML et al (2021) Clinical outcomes with abemaciclib after prior CDK4/6 inhibitor progression in breast cancer: a multicenter experience. J Natl Compr Canc Netw. https://doi.org/10.6004/jnccn.2020.7662

    Article  PubMed  Google Scholar 

  62. Brett JO, Dubash TD, Niemierko A et al (2021) Association between co-existing genomic alterations and abemaciclib benefit in patients with metastatic hormone receptor-positive breast cancer with ESR1 mutations following disease progression on prior endocrine therapy plus palbociclib or ribociclib. SABCS 2021 Abstract #PD2-03

    Google Scholar 

  63. Hlevnjak M, Schulze M, Elgaafary S et al (2021) CATCH: a prospective precision oncology trial in metastatic breast cancer. JCO Precis Oncol. https://doi.org/10.1200/PO.20.00248

    Article  PubMed  PubMed Central  Google Scholar 

  64. Horak P, Heining C, Kreutzfeldt S et al (2021) Comprehensive genomic and transcriptomic analysis for guiding therapeutic decisions in patients with rare cancers. Cancer Discov 11:2780–2795

    CAS  PubMed  Google Scholar 

  65. Miao L, Zhang Y, Huang L (2021) mRNA vaccine for cancer immunotherapy. Mol Cancer 20:41

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226

    CAS  PubMed  Google Scholar 

  67. Magbanua MJM, Swigart LB, Wu HT et al (2021) Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 32:229–239

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Hlevnjak.

Ethics declarations

Conflict of interest

M. Hlevnjak declares receiving speaker’s fee from Merck Sharp & Dohme (MSD).

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

Redaktion

Thomas Strowitzki, Heidelberg

Klaus Diedrich, Lübeck

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlevnjak, M. Tumor genetics and individualized therapy. Gynäkologie 55, 424–431 (2022). https://doi.org/10.1007/s00129-022-04931-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-022-04931-8

Keywords

Schlüsselwörter

Navigation