Maternale Schadstoffexposition und kindliche (intrauterine) Entwicklung

Maternal exposure to pollutants and child (intrauterine) development

Zusammenfassung

Hintergrund

Die Exposition gegenüber Umweltgiften ist ubiquitär in industrialisierten Ländern.

Fragestellung

Expositionsrouten und gesundheitsrelevante Effekte besonders mit Blick auf die Reproduktion bei Frauen und der intrauterinen Entwicklung von Kindern sowie perinatale Programmierung.

Material und Methoden

Auswertung und Reflektion aktueller Publikationen zum Thema mit Darstellung neuster Erkenntnisse und relevanter Zukunftsperspektiven.

Ergebnisse

Durch epidemiologische Studien gilt als gesichert, dass Menschen und Tiere heute einer Vielzahl von Umweltgiften ausgesetzt sind und trotz strenger Grenzwerte gesundheitsrelevante Effekte nicht ausgeschlossen werden können, sondern als sehr wahrscheinlich gelten. Mechanistische Untersuchungen tragen zum besseren Verständnis und zur Verdeutlichung der Dringlichkeit bei.

Schlussfolgerung

Mit weiterführenden epidemiologischen und experimentellen Studien können Bedeutung und Risiken für die Reproduktion und die kindliche Entwicklung durch Umweltgifte besser ergründet und politische Entscheidungsfindung sowie medizinische Prävention von Gesundheitseffekten vorangetrieben werden.

Abstract

Background

Exposure to environmental chemicals is ubiquitous in industrialized countries.

Objectives

Defining paths of exposure and health-related effects with regard to female reproductive parameters, perinatal programming and intrauterine fetal development.

Methods

Evaluation of and reflection on the recent body of literature on this topic and a presentation of novel findings and relevant future perspectives.

Results

Epidemiologic studies have proven that, in today’s environment, humans and animals alike are exposed to environmental toxicants and that, despite strict regulations, health effects cannot be ruled out, but appear instead highly likely. Mechanistic research can contribute to a better understanding of these threats and highlight their urgency.

Conclusions

Following novel epidemiologic and experimental studies, the significance of and risks to reproduction and infant development from environmental toxicants can be better understood and political decision-making and medical prevention of health effects further advanced.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Pellizzari ED et al (2019) Identifying and prioritizing chemicals with uncertain burden of exposure: opportunities for biomonitoring and health-related research. Environ Health Perspect 127(12):126001

    Article  Google Scholar 

  2. 2.

    Bundesinstitut für Risikobewertung (2020) BfR – Leitbild. https://www.bfr.bund.de/de/bfr___leitbild-200288.html. Zugegriffen: 18. Dez. 2020

  3. 3.

    Zimmermann L et al (2019) Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol 53(19):11467–11477

    CAS  Article  Google Scholar 

  4. 4.

    Wang T et al (2018) The NIEHS TaRGET II Consortium and environmental epigenomics. Nat Biotechnol 36(3):225–227

    CAS  Article  Google Scholar 

  5. 5.

    Dietert RR (2014) Developmental immunotoxicity, perinatal programming, and noncommunicable diseases: focus on human studies. Adv Med. https://doi.org/10.1155/2014/867805

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Darbre PD, Harvey PW (2008) Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol 28(5):561–578

    CAS  Article  Google Scholar 

  7. 7.

    Ye X et al (2006) Parabens as urinary biomarkers of exposure in humans. Environ Health Perspect 114(12):1843–1846

    CAS  Article  Google Scholar 

  8. 8.

    Becker K et al (2009) GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health 212(6):685–692

    CAS  Article  Google Scholar 

  9. 9.

    Braun JM, Sathyanarayana S, Hauser R (2013) Phthalate exposure and children’s health. Curr Opin Pediatr 25(2):247–254

    CAS  Article  Google Scholar 

  10. 10.

    Paoli D et al (2020) Phthalates and bisphenol A: presence in blood serum and follicular fluid of Italian women undergoing assisted reproduction techniques. Toxics 8(4):91

    Article  Google Scholar 

  11. 11.

    Völkel W et al (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15(10):1281–1287. https://doi.org/10.1021/tx025548t

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ghazipura M et al (2017) Exposure to benzophenone‑3 and reproductive toxicity: a systematic review of human and animal studies. Reprod Toxicol 73:175–183

    CAS  Article  Google Scholar 

  13. 13.

    Kim S, Choi K (2014) Occurrences, toxicities, and ecological risks of benzophenone‑3, a common component of organic sunscreen products: a mini-review. Environ Int 70:143–157

    CAS  Article  Google Scholar 

  14. 14.

    Foster W et al (2000) Detection of endocrine disrupting chemicals in samples of second trimester human amniotic fluid. J Clin Endocrinol Metab 85(8):2954–2957

    CAS  Article  Google Scholar 

  15. 15.

    Gore AC et al (2015) EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36(6):E1–E150

    CAS  Article  Google Scholar 

  16. 16.

    Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5):378–384

    CAS  Article  Google Scholar 

  17. 17.

    Hensel A (2010) Einführung in die Thematik Endokrine Disruptoren. BfR, Berlin

    Google Scholar 

  18. 18.

    Juncker J‑C, Brüssel (2018) Verordnung (EU) 2018/213 der Kommission über die Verwendung von Bisphenol A in Lacken und Beschichtungen, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen. European Commission Publications Office, Brüssel, S 1–7

    Google Scholar 

  19. 19.

    EFSA Panel on Food Contact Materials et al (2019) Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFS2 17(12):e5838

    Google Scholar 

  20. 20.

    Calafat AM et al (2008) Exposure of the U.S. population to bisphenol A and 4‑tertiary-octylphenol: 2003–2004. Environ Health Perspect 116(1):39–44

    CAS  Article  Google Scholar 

  21. 21.

    Deceuninck Y et al (2015) Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 407(9):2485–2497

    CAS  Article  Google Scholar 

  22. 22.

    Rattan S, Flaws JA (2019) The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol Reprod 101(3):635–644

    Article  Google Scholar 

  23. 23.

    Lopez-Rodriguez D et al (2020) Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol. https://doi.org/10.1038/s41574-020-00436-3

    Article  PubMed  Google Scholar 

  24. 24.

    López-Rodríguez D et al (2019) Persistent vs transient alteration of folliculogenesis and estrous cycle after neonatal vs adult exposure to bisphenol A. Endocrinology 160(11):2558–2572

    PubMed  Google Scholar 

  25. 25.

    Zhou C, Gao L, Flaws JA (2017) Exposure to an environmentally relevant phthalate mixture causes transgenerational effects on female reproduction in mice. Endocrinology 158(6):1739–1754

    CAS  Article  Google Scholar 

  26. 26.

    Newbold RR et al (1998) Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 19(9):1655–1663

    CAS  Article  Google Scholar 

  27. 27.

    Kreitinger JM, Beamer CA, Shepherd DM (2016) Environmental immunology: lessons learned from exposure to a select panel of immunotoxicants. J Immunol 196(8):3217–3225

    CAS  Article  Google Scholar 

  28. 28.

    Sunyer J et al (2010) DDE in mothers’ blood during pregnancy and lower respiratory tract infections in their infants. Epidemiology 21(5):729–735

    Article  Google Scholar 

  29. 29.

    Holladay SD (1999) Prenatal immunotoxicant exposure and postnatal autoimmune disease. Environ Health Perspect 107(Suppl 5):687–691

    CAS  Article  Google Scholar 

  30. 30.

    Leifer CA, Dietert RR (2011) Early life environment and developmental immunotoxicity in inflammatory dysfunction and disease. Toxicol Environ Chem 93(7):1463–1485

    CAS  Article  Google Scholar 

  31. 31.

    Rogers JA, Metz L, Yong VW (2013) Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol‑A and its potential mechanisms. Mol Immunol 53(4):421–430

    CAS  Article  Google Scholar 

  32. 32.

    Robinson L, Miller R (2015) The impact of bisphenol A and phthalates on allergy, asthma, and immune function: a review of latest findings. Curr Environ Health Rep 2(4):379–387

    CAS  Article  Google Scholar 

  33. 33.

    Herberth G et al (2017) Prenatal phthalate exposure associates with low regulatory T‑cell numbers and atopic dermatitis in early childhood: results from the LINA mother-child study. J Allergy Clin Immunol 139(4):1376–1379.e8

    CAS  Article  Google Scholar 

  34. 34.

    Jahreis S et al (2018) Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol 141(2):741–753

    CAS  Article  Google Scholar 

  35. 35.

    Leppert B et al (2020) Maternal paraben exposure triggers childhood overweight development. Nat Commun 11(1):561

    CAS  Article  Google Scholar 

  36. 36.

    Santamaria CG et al (2020) Dermal exposure to the UV filter benzophenone‑3 during early pregnancy affects fetal growth and sex ratio of the progeny in mice. Arch Toxicol 94(8):2847–2859

    CAS  Article  Google Scholar 

  37. 37.

    Santamaría CG et al (2019) The UV filter benzophenone 3, alters early follicular assembly in rat whole ovary cultures. Toxicol Lett 303:48–54

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. Ana C. Zenclussen.

Ethics declarations

Interessenkonflikt

T. Kretschmer und A.C. Zenclussen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

B. Sonntag, Hamburg

G. Emons, Göttingen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kretschmer, T., Zenclussen, A.C. Maternale Schadstoffexposition und kindliche (intrauterine) Entwicklung. Gynäkologe 54, 253–259 (2021). https://doi.org/10.1007/s00129-021-04778-5

Download citation

Schlüsselwörter

  • Xenobiotika
  • Endokrine Disruptoren
  • Reproduktion
  • Epidemiologische Studien
  • Epigenetik

Keywords

  • Xenobiotics
  • Endocrine disruptors
  • Reproduction
  • Epidemiologic studies
  • Epigenetics