Der Einfluss von Umweltfaktoren und Lebensstil auf die männliche Fertilität

The impact of environmental factors and lifestyle on male fertility


Bei der Erfassung kausaler Faktoren männlicher Fertilitätsstörungen spielen Lebensstil und Umweltfaktoren eine wichtige Rolle. Das Wissen um die Wechselwirkungen zwischen derartigen Einflüssen und reproduktiven Funktionen des Mannes eröffnet zudem die Möglichkeit eines präventiven Ansatzes in der Andrologie. Relevante exogene Noxen sind Genussgifte, Pharmaka einschließlich Lifestyle-Medikamenten, Berufsstoffe, Umweltchemikalien sowie physikalische Faktoren. Reproduktionstoxische Effekte können sich prätestikulär, testikulär oder posttestikulär entfalten und neben einer Beeinträchtigung der Spermatogenese oder Spermienfunktion auch Hormon- und Sexualstörungen verursachen. Aufgrund der komplexen Regulation des männlichen Reproduktionssystems sowie der begrenzten Übertragbarkeit tierexperimenteller Befunde und In-vitro-Daten auf die Situation beim Menschen liegen allerdings nur für wenige Noxen gesicherte Erkenntnisse vor. In der andrologischen Sprechstunde sollten bei Erhebung der Anamnese potenzielle Expositionsrisiken erfasst und die Patienten über eine gesicherte oder mögliche Relevanz für ihre Fertilität aufgeklärt werden.


The identification of potential environmental hazards may have clinical relevance for the diagnosis of male infertility. Knowledge about the interaction between these factors and male reproductive function opens up the possibility of a preventive approach in andrology. Apart from drugs or factors related to lifestyle, such as alcohol and tobacco smoke, various environmental and occupational agents both chemical and physical, may impair male reproductive functions. Reproductive toxicity may evolve at the hypothalamic-pituitary, testicular, or posttesticular level; endpoints comprise impairment of spermatogenesis and sperm function as well as endocrine disorders and sexual dysfunction. With respect to the complex regulation of the male reproductive system, the available information concerning single exogenous factors and their mechanisms of action in humans is limited. This is also due to the fact that extrapolation of results obtained from experimental animal and in vitro studies remains difficult. Nevertheless, the assessment of relevant exposures to reproductive toxicants should be carefully evaluated during diagnostic procedures for patients and elaborated during the andrological consultation.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2


  1. 1.

    Adegoke EO, Rahman MS, Pang MG (2020) Bisphenols threaten male reproductive health via testicular cells. Front Endocrinol (Lausanne) 11:624.

    Article  Google Scholar 

  2. 2.

    Aitken RJ, Koopman P, Lewis SE (2004) Seeds of concern. Nature 432:48–52

    CAS  PubMed  Google Scholar 

  3. 3.

    Alvarez S (2015) Do some addictions interfere with fertility? Fertil Steril 103(1):22–26

    PubMed  Google Scholar 

  4. 4.

    Axelsson J, Rylander L, Rignell-Hydbom A, Silfver KA, Stenqvist A, Giwercman A (2013) The impact of paternal andmaternal smoking on semen quality of adolescent men. PLoS One 8:e66766

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bahrke MS, Yesalis CE, Kopstein AN, Stephens JA (2000) Risk factors associated with anabolic-androgenic steroid use among adolescents. Sports Med 29:397–405

    CAS  PubMed  Google Scholar 

  6. 6.

    Bonde JP (2006) Effects of lifestyle and toxicants. In: Schill W‑B, Comhaire F, Hargreave TB (Hrsg) Andrology for the clinician. Springer, Heidelberg, S 348–357

    Google Scholar 

  7. 7.

    Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, Hougaard KS, Høyer BB, Hærvig KK, Petersen SB, Rylander L, Specht IO, Toft G, Bräuner EV (2016) The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update 23(1):104–125

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Boos C, Wulff P, Kujath P, Bruch H‑P (1998) Medikamentenmißbrauch beim Freizeitsportler im Fitneßbereich. Dtsch Ärztebl 95:A-953–957

    Google Scholar 

  9. 9.

    Brenker C, Rehfeld A, Schiffer C, Kierzek M, Kaupp UB, Skakkebæk NE, Strünker T (2018) Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals. Hum Reprod 33(10):1915–1923

    CAS  PubMed  Google Scholar 

  10. 10.

    Broe A, Pottegård A, Hallas J, Ahern TP, Fedder J, Damkier P (2018) Association between use of phthalate-containing medication and semen quality among men in couples referred for assisted reproduction. Hum Reprod 33(3):503–511

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Castellini C, Totaro M, Parisi A, D’Andrea S, Lucente L, Cordeschi G, Francavilla S, Francavilla F, Barbonetti A (2020) Bisphenol A and male fertility: myths and realities. Front Endocrinol (Lausanne) 11:353.

    Article  Google Scholar 

  12. 12.

    Carlsen E, Giwercman A, Keiding N, Skakkebaek NE (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Carroll K, Pottinger AM, Wynter S, DaCosta V (2020) Marijuana use and its influence on sperm morphology and motility: identified risk for fertility among Jamaican men. Andrology 8(1):136–142

    CAS  PubMed  Google Scholar 

  14. 14.

    Chastain LG, Sarkar DK (2017) Alcohol effects on the epigenome in the germline: role in the inheritance of alcohol-related pathology. Alcohol 60:53–66

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Corona G, Sansone A, Pallotti F, Ferlin A, Pivonello R, Isidori AM, Maggi M, Jannini EA (2020) People smoke for nicotine, but lose sexual and reproductive health for tar: a narrative review on the effect of cigarette smoking on male sexuality and reproduction. J Endocrinol Invest 43(10):1391–1408

    CAS  PubMed  Google Scholar 

  16. 16.

    Craig JR, Jenkins TG, Carrell DT, Hotaling JM (2017) Obesity, male infertility, and the sperm epigenome. Fertil Steril 107:848–859

    PubMed  Google Scholar 

  17. 17.

    Crujeiras AB, Casanueva FF (2015) Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update 21(2):249–261

    CAS  PubMed  Google Scholar 

  18. 18.

    Dai JB, Wang ZX, Qiao ZD (2015) The hazardous effects of tobacco smoking on male fertility. Asian J Androl 17:954–960

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Darbandi M, Darbandi S, Agarwal A, Henkel R, Sadeghi MR (2018) The effects of exposure to low frequency electromagnetic fields on male fertility. Altern Ther Health Med 24(4):24–29

    PubMed  Google Scholar 

  20. 20.

    De-Celis R, Feria-Velasco A, Gonzalez-Unzaga M, Torres-Calleja J, Pedron-Nuevo N (2000) Semen quality of workers occupationally exposed to hydrocarbons. Fertil Steril 73:221–228

    CAS  PubMed  Google Scholar 

  21. 21.

    Fariello RM, Pariz JR, Spaine DM, Cedenho AP, Bertolla RP, Fraietta R (2012) Association between obesity and alteration of sperm DNA integrity and mitochondrial activity. BJU Int 110:863–867

    CAS  Google Scholar 

  22. 22.

    Fritsche E, Schuppe HC, Döhr O, Ruzicka T, Gleichmann E, Abel J (1998) Increased frequencies of cytochrome P4501A1 polymorphisms in infertile men. Andrologia 30:125–128

    CAS  PubMed  Google Scholar 

  23. 23.

    Fronczak CM, Kim ED, Barqawi AB (2012) The insults of illicit drug use on male fertility. J Androl 33(4):515–528

    CAS  PubMed  Google Scholar 

  24. 24.

    Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, Foresta C (2013) Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod 28:877–885

    CAS  PubMed  Google Scholar 

  25. 25.

    Gaskins AJ, Colaci DS, Mendiola J, Swan SH, Chavarro JE (2012) Dietary patterns and semen quality in young men. Hum Reprod 27(10):2899–2907

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gaskins AJ, Mendiola J, Afeiche M, Jørgensen N, Swan SH, Chavarro JE (2015) Physical activity and television watching in relation to semen quality in young men. Br J Sports Med 49:265–270

    PubMed  Google Scholar 

  27. 27.

    Gianfrilli D, Ferlin A, Isidori AM, Garolla A, Maggi M, Pivonello R, Santi D, Sansone A, Balercia G, Granata ARM, Sinisi A, Lanfranco F, Pasqualetti P, Foresta C, Lenzi A, ‘Amico-Andrologo’ Study Group (2019) Risk behaviours and alcohol in adolescence are negatively associated with testicular volume: results from the Amico-Andrologo survey. Andrology 7(6):769–777

    CAS  PubMed  Google Scholar 

  28. 28.

    Gundersen TD, Jørgensen N, Andersson AM, Bang AK, Nordkap L, Skakkebæk NE, Priskorn L, Juul A, Jensen TK (2015) Association between use of marijuana and male reproductive hormones and semen quality: a study among 1,215 healthy young men. Am J Epidemiol 182:473–481

    PubMed  Google Scholar 

  29. 29.

    Håkonsen LB, Ernst A, Ramlau-Hansen CH (2014) Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl 16:39–49

    PubMed  Google Scholar 

  30. 30.

    Haidl G, Allam J‑P, Schuppe H‑C, Köhn F‑M (2013) Nimmt die Fruchtbarkeit der Männer ab? Gynäkologe 46:18–21

    Google Scholar 

  31. 31.

    Hales BF, Robaire B (2020) Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 8(4):915–923

    CAS  PubMed  Google Scholar 

  32. 32.

    Halgamuge MN, Skafidas E, Davis D (2020) A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990–2015). Environ Res 184:109227.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hassan MAM, Killick SR (2004) Negative lifestyle is associated with a significant reduction in fecundity. Fertil Steril 81:384–392

    PubMed  Google Scholar 

  34. 34.

    Hipwell AE, Kahn LG, Factor-Litvak P, Porucznik CA, Siegel EL, Fichorova RN, Hamman RF, Klein-Fedyshin M, Harley KG, program collaborators for Environmental influences on Child Health Outcomes (2019) Exposure to non-persistent chemicals in consumer products and fecundability: a systematic review. Hum Reprod Update 25(1):51–71

    CAS  PubMed  Google Scholar 

  35. 35.

    Holmboe SA, Priskorn L, Jensen TK, Skakkebaek NE, Andersson AM, Jørgensen N (2020) Use of e‑cigarettes associated with lower sperm counts in a cross-sectional study of young men from the general population. Hum Reprod 35(7):1693–1701

    PubMed  Google Scholar 

  36. 36.

    Hoyes KP, Morris ID (1996) Environmental radiation and male reproduction. Int J Androl 19:199–204

    CAS  PubMed  Google Scholar 

  37. 37.

    Høyer S, Riis AH, Toft G, Wise LA, Hatch EE, Wesselink AK, Rothman KJ, Sørensen HT, Mikkelsen EM (2020) Male alcohol consumption and fecundability. Hum Reprod 35(4):816–825

    PubMed  Google Scholar 

  38. 38.

    Jensen T, Gottschau M, Broby Madsen J, Andersson AM, Harmer T, Skakkebæk N et al (2014) Habitual alcohol consumption associated with reduced semen quality and changes in reproductive hormones; a cross-sectional study among 1221 young Danish men. BMJ Open 4:e5462

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Jørgensen N, Joensen UN, Jensen TK, Jensen MB, Almstrup K, Olesen IA, Juul A, Andersson AM, Carlsen E, Petersen JH, Toppari J, Skakkebæk NE (2012) Human semen quality in the new millennium: a prospective cross-sectional population-based study of 4867 men. BMJ Open 2(4):e990.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Jung A, Schuppe HC (2007) Influence of genital heat stress on semen quality in humans. Andrologia 39:203–215

    CAS  PubMed  Google Scholar 

  41. 41.

    Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L (2020) Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 8:703–718

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Karayiannis D, Kontogianni MD, Mendorou C, Douka L, Mastrominas M, Yiannakouris N (2017) Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility. Hum Reprod 32(1):215–222

    CAS  PubMed  Google Scholar 

  43. 43.

    Karmon AE, Toth TL, Chiu YH, Gaskins AJ, Tanrikut C, Wright DL, Hauser R, Chavarro JE, Earth Study Team (2017) Male caffeine and alcohol intake in relation to semen parameters and in vitro fertilization outcomes among fertility patients. Andrology 5(2):354–361

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kesari KK, Agarwal A, Henkel R (2018) Radiations and male fertility. Reprod Biol Endocrinol 16:118.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kiguradze T, Temps WH, Yarnold PR, Cashy J, Brannigan RE, Nardone B, Micali G, West DP, Belknap SM (2017) Persistent erectile dysfunction in men exposed to the 5α-reductase inhibitors, finasteride, or dutasteride. PeerJ 5:e3020

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Köhn F‑M, Schuppe H‑C (2016) Umweltfaktoren und männliche Fertilität. Urologe A 55:877–882

    PubMed  Google Scholar 

  47. 47.

    La Vignera S, Condorelli RA, Balercia G, Vicari E, Calogero AE (2013) Does alcohol have any effect on male reproductive function? A review of literature. Asian J Androl 15:221–225

    CAS  PubMed  Google Scholar 

  48. 48.

    Lerchl A (2013) Electromagnetic pollution: another risk factor for infertility, or a red herring? Asian J Androl 15:201–203

    PubMed  Google Scholar 

  49. 49.

    Levine RJ, Brown MH, Bell M, Shue F, Greenberg GN, Bordson BL (1992) Air-conditioned environments do not prevent deterioration of human semen quality during the summer. Fertil Steril 57:1075–1083

    CAS  PubMed  Google Scholar 

  50. 50.

    Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, Pinotti R, Swan SH (2017) Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update 23(6):646–659

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Liu K, Li Y, Zhang G, Liu J, Cao J, Ao L, Zhang S (2014) Association between mobile phone use and semen quality: a systemic review and meta-analysis. Andrology 2:491–501

    CAS  PubMed  Google Scholar 

  52. 52.

    Liu K, Hou G, Wang X, Chen H, Shi F, Liu C, Zhang X, Han F, Yang H, Zhou N, Ao L, Liu J, Cao J, Chen Q (2020) Adverse effects of circadian desynchrony on the male reproductive system: an epidemiological and experimental study. Hum Reprod 35(7):1515–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lötsch J, Schneider G, Reker D, Parnham MJ, Schneider P, Geisslinger G, Doehring A (2013) Common non-epigenetic drugs as epigenetic modulators. Trends Mol Med 19(12):742–753

    PubMed  Google Scholar 

  54. 54.

    MacLeod J, Wang Y (1979) Male fertility potential in terms of semen quality: a review of the past, a study of the present. Fertil Steril 31:103–116

    CAS  PubMed  Google Scholar 

  55. 55.

    McBride JA, Coward RM (2016) Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian J Androl 18(3):373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mínguez-Alarcón L, Chavarro JE, Mendiola J, Gaskins AJ, Torres-Cantero AM (2014) Physical activity is not related to semen quality in young healthy men. Fertil Steril 102:1103–1109

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Mínguez-Alarcón L, Gaskins AJ, Chiu YH, Messerlian C, Williams PL, Ford JB, Souter I, Hauser R, Chavarro JE (2018) Type of underwear worn and markers of testicular function among men attending a fertility center. Hum Reprod 33(9):1749–1756

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Møllerløkken OJ, Moen BE (2008) Is fertility reduced among men exposed to radiofrequency fields in the Norwegian navy? Bioelectromagnetics 29:345–352

    PubMed  Google Scholar 

  59. 59.

    Mostafa RM, Nasrallah YS, Hassan MM, Farrag AF, Majzoub A, Agarwal A (2018) The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia.

    Article  PubMed  Google Scholar 

  60. 60.

    Nassan FL, Arvizu M, Mínguez-Alarcón L, Williams PL, Attaman J, Petrozza J, Hauser R, Chavarro J, EARTH Study Team (2019) Marijuana smoking and markers of testicular function among men from a fertility centre. Hum Reprod 34(4):715–723

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Nazmara Z, Najafi M, Rezaei-Mojaz S, Movahedin M, Zandiyeh Z, Shirinbayan P, Roshanpajouh M, Asgari HR, Hosseini Jafari Lavasani L, Koruji M (2019) The effect of heroin addiction on human sperm parameters, histone-to-protamine transition, and serum sexual hormones levels. Urol J 16(3):289–294

    PubMed  Google Scholar 

  62. 62.

    Nazmara Z, Shirinbayan P, Reza Asgari H, Ahadi R, Asgari F, Maki CB, Fattahi F, Hosseini B, Janzamin E, Koruji M (2020) The epigenetic alterations of human sperm cells caused by heroin use disorder. Andrologia.

    Article  PubMed  Google Scholar 

  63. 63.

    Nelson CMK, Bunge RG (1974) Semen analysis: evidence for changing parameters of male fertility potential. Fertil Steril 25:503–507

    CAS  PubMed  Google Scholar 

  64. 64.

    Nieschlag E, Vorona E (2015) Mechanisms in endocrinology: medical consequences of doping with anabolic androgenic steroids: effects on reproductive functions. Eur J Endocrinol 173:R47–R58

    CAS  PubMed  Google Scholar 

  65. 65.

    Nordkap L, Jensen TK, Hansen ÅM, Lassen TH, Bang AK, Joensen UN, Blomberg Jensen M, Skakkebæk NE, Jørgensen N (2016) Psychological stress and testicular function: a cross-sectional study of 1,215 Danish men. Fertil Steril 105(1):174–187

    PubMed  Google Scholar 

  66. 66.

    Nordkap L, Priskorn L, Bräuner EV, Hansen MÅ, Kirstine Bang A, Holmboe SA, Winge SB, Egeberg Palme DL, Mørup N, Skakkebaek EN, Kold Jensen T, Jørgensen N (2020) Impact of psychological stress measured in three different scales on testis function: a cross-sectional study of 1362 young men. Andrology.

    Article  PubMed  Google Scholar 

  67. 67.

    Pacey AA, Povey AC, Clyma JA, McNamee R, Moore HD, Baillie H, Cherry NM (2014) Modifiable and non-modifiable risk factors for poor sperm morphology. Hum Reprod 29:1629–1636

    PubMed  Google Scholar 

  68. 68.

    Pflieger-Bruss S, Schuppe H‑C, Schill W‑B (2004) The male reproductive system and its susceptibility to endocrine disrupting chemicals. Andrologia 36:337–345

    CAS  PubMed  Google Scholar 

  69. 69.

    Potashnik G, Porath A (1995) Dibromochloropropane (DBCP): a 17-year reassessment of testicular function and reproductive performance. J Occup Environ Med 37:1278–1291

    Google Scholar 

  70. 70.

    Rahban R, Priskorn L, Senn A, Stettler E, Galli F, Vargas J, Van den Bergh M, Fusconi A, Garlantezec R, Jensen TK, Multigner L, Skakkebaek NE, Germond M, Jørgensen N, Nef S, NICER Working Group (2019) Semen quality of young men in Switzerland: a nationwide cross-sectional population-based study. Andrology 7:818–826

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Rahban R, Nef S (2020) Regional difference in semen quality of young men: a review on the implication of environmental and lifestyle factors during fetal life and adulthood. Basic Clin Androl 30:16.

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Rajanahally S, Raheem O, Rogers M, Brisbane W, Ostrowski K, Lendvay T, Walsh T (2019) The relationship between cannabis and male infertility, sexual health, and neoplasm: a systematic review. Andrology 7(2):139–147

    CAS  PubMed  Google Scholar 

  73. 73.

    Rasmussen JJ, Selmer C, Østergren PB, Pedersen KB, Schou M, Gustafsson F, Faber J, Juul A, Kistorp C (2016) Former abusers of anabolic androgenic steroids exhibit decreased testosterone levels and hypogonadal symptoms years after cessation: a case-control study. PLoS ONE 11(8):e161208.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ricci E, Al Beitawi S, Cipriani S, Candiani M, Chiaffarino F, Viganò P, Noli S, Parazzini F (2017) Semen quality and alcohol intake: a systematic review and meta-analysis. Reprod Biomed Online 34:38–47

    CAS  PubMed  Google Scholar 

  75. 75.

    Ricci E, Viganò P, Cipriani S, Somigliana E, Chiaffarino F, Bulfoni A, Parazzini F (2017) Coffee and caffeine intake and male infertility: a systematic review. Nutr J 16:37

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Rosety MÁ, Díaz AJ, Rosety JM, Pery MT, Brenes-Martín F, Bernardi M, García N, Rosety-Rodríguez M, Ordoñez FJ, Rosety I (2017) Exercise improved semen quality and reproductive hormone levels in sedentary obese adults. Nutr Hosp 34:603–607

    PubMed  Google Scholar 

  77. 77.

    Rowley MJ, Leach DR, Warner GA, Heller CG (1974) Effect of graded doses of ionizing radiation on the human testis. Radiat Res 59:665–678

    CAS  PubMed  Google Scholar 

  78. 78.

    Salas-Huetos A, Bulló M, Salas-Salvadó J (2017) Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update 23:371–389

    PubMed  Google Scholar 

  79. 79.

    Samavat J, Cantini G, Lotti F, Di Franco A, Tamburrino L, Degl’Innocenti S, Maseroli E, Filimberti E, Facchiano E, Lucchese M, Muratori M, Forti G, Baldi E, Maggi M, Luconi M (2017) Massive weight loss obtained by bariatric surgery affects semen quality in morbid male obesity: a preliminary prospective double-armed study. OBES SURG.

    Article  Google Scholar 

  80. 80.

    Samplaski MK, Lo K, Grober E, Jarvi K (2013) Finasteride use in the male infertility population: effects on semen and hormone parameters. Fertil Steril 100(6):1542–1546

    CAS  PubMed  Google Scholar 

  81. 81.

    Schagdarsurengin U, Steger K (2016) Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol 13:584–595

    CAS  PubMed  Google Scholar 

  82. 82.

    Schuppe H‑C, Jung A, Köhn F‑M, Haidl G (2011) Wie Genußgifte die Fertilität beeinflussen können. MMW Fortschr Med 153(6):33–36

    PubMed  Google Scholar 

  83. 83.

    Schuppe H‑C (2012) Missbrauch anabol-androgener Steroide. In: Harth W, Brähler E, Schuppe H‑C (Hrsg) Praxishandbuch Männergesundheit. Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin, S 224–230

    Google Scholar 

  84. 84.

    Schuppe H‑C, Köhn F‑M (2014) Fertilitätsstörungen des Mannes. In: Gnoth C, Mallmann P (Hrsg) Perikonzeptionelle Frauenheilkunde. Springer, Berlin, Heidelberg, S 251–280

    Google Scholar 

  85. 85.

    Schuppe H‑C, Köhn F‑M (2018) Andrologie. In: Plewig G et al (Hrsg) Braun-Falco’s Dermatologie, Venerologie und Allergologie, 7. Aufl. Springer, Berlin, Heidelberg

    Google Scholar 

  86. 86.

    Selvaraju V, Baskaran S, Agarwal A, Henkel R (2020) Environmental contaminants and male infertility: effects and mechanisms. Andrologia.

    Article  PubMed  Google Scholar 

  87. 87.

    Semet M, Paci M, Saïas-Magnan J, Metzler-Guillemain C, Boissier R, Lejeune H, Perrin J (2017) The impact of drugs on male fertility: a review. Andrology 5(4):640–663

    CAS  PubMed  Google Scholar 

  88. 88.

    Sengupta P, Borges E Jr, Dutta S, Krajewska-Kulak E (2018) Decline in sperm count in European men during the past 50 years. Hum Exp Toxicol 37:247–255

    CAS  PubMed  Google Scholar 

  89. 89.

    Sermondade N, Faure C, Fezeu L, Shayeb AG, Bonde JP, Jensen TK, Van Wely M, Cao J, Martini AC, Eskandar M, Chavarro JE, Koloszar S, Twigt JM, Ramlau-Hansen CH, Borges E Jr, Lotti F, Steegers-Theunissen RP, Zorn B, Polotsky AJ, La Vignera S, Eskenazi B, Tremellen K, Magnusdottir EV, Fejes I, Hercberg S, Lévy R, Czernichow S (2013) BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update 19:221–231

    CAS  PubMed  Google Scholar 

  90. 90.

    Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341:1392–1395

    CAS  PubMed  Google Scholar 

  91. 91.

    Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A (2016) Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev 96(1):55–97

    CAS  PubMed  Google Scholar 

  92. 92.

    Skarberg K, Nyberg F, Engstrom I (2009) Multisubstance use as a feature of addiction to anabolic-androgenic steroids. Eur Addict Res 15(2):99–106

    PubMed  Google Scholar 

  93. 93.

    Sun B, Messerlian C, Sun ZH, Duan P, Chen HG, Chen YJ, Wang P, Wang L, Meng TQ, Wang Q, Arvizu M, Chavarro JE, Wang YX, Xiong CL, Pan A (2019) Physical activity and sedentary time in relation to semen quality in healthy men screened as potential sperm donors. Hum Reprod 34(12):2330–2339

    PubMed  Google Scholar 

  94. 94.

    Swan SH, Elkin EP, Fenster L (1997) Have sperm densities declined? A reanalysis of global trend data. Environ Health Perspect 105:1228–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Stokes VJ, Anderson RA, George JT (2015) How does obesity affect fertility in men—and what are the treatment options? Clin Endocrinol (Oxf) 82(5):633–638

    Google Scholar 

  96. 96.

    Striegel H, Simon P, Frisch S, Roecker K, Dietz K, Dickhuth HH, Ulrich R (2006) Anabolic ergogenic substance users in fitness-sports: a distinct group supported by the health care system. Drug Alcohol Depend 81:11–19

    PubMed  Google Scholar 

  97. 97.

    Suzuki Y, Yoshinga J, Mizumoto Y et al (2012) Foetal exposure to phthalate esters and anogenital distance in male newborns. Int J Androl 35:236–244

    CAS  PubMed  Google Scholar 

  98. 98.

    Tas S, Lauwerys R, Lison D (1996) Occupational hazards for the male reproductive system. Crit Rev Toxicol 26:261–307

    CAS  PubMed  Google Scholar 

  99. 99.

    Tavares RS, Mansell S, Barratt CL, Wilson SM, Publicover SJ, Ramalho-Santos J (2013) p,p′-DDE activates CatSper and compromises human sperm function at environmentally relevant concentrations. Hum Reprod 28(12):3167–3177

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Thonneau P, Bujan L, Multigner L, Mieusset R (1998) Occupational heat exposure and male fertility: a review. Hum Reprod 13:2122–2125

    CAS  PubMed  Google Scholar 

  101. 101.

    Toth B et al (2019) Diagnostik und Therapie vor einer assistierten reproduktionsmedizinischen Behandlung (ART). S2k-Leitlinie. (AWMF-Register Nr. 015/ 085, 02/2019). Zugegriffen: 07.12.2020

  102. 102.

    Traish AM (2020) Post-finasteride syndrome: a surmountable challenge for clinicians. Fertil Steril 113(1):21–50

    CAS  PubMed  Google Scholar 

  103. 103.

    Vaamonde D, Algar-Santacruz C, Abbasi A, García-Manso JM (2017) Sperm DNA fragmentation as a result of ultra-endurance exercise training in male athletes. Andrologia.

    Article  PubMed  Google Scholar 

  104. 104.

    Veulemans H, Steeno O, Masschelein R, Groeseneken D (1993) Exposure to ethylene glycol ethers and spermatogenic disorders in man: a case-control study. Br J Ind Med 50:71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Vine MF, Margolin BH, Morrison HI, Hulka BS (1994) Cigarette smoking and sperm density: a meta-analysis. Fertil Steril 61:35–43

    CAS  PubMed  Google Scholar 

  106. 106.

    Wagner U, Schlebusch H, van der Ven H, van der Ven K, Diedrich K, Krebs D (1990) Accumulation of pollutants in the genital tract of sterility patients. J Clin Chem Clin Biochem 28:683–688

    CAS  PubMed  Google Scholar 

  107. 107.

    Warner GR, Flaws JA (2018) Common bisphenol A replacements are reproductive toxicants. Nat Rev Endocrinol.

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Wilcox AJ, Bonde JPE (2013) On environmental threats to male infertility. Asian J Androl 15:199–200

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Woodruff TJ, Carlson A, Schwartz JM, Giudice LC (2008) Proceedings of the summit on environmental challenges to reproductive health and fertility: executive summary. Fertil Steril 89(2):281–300

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    World Health Organization (2012) WHO Laborhandbuch zur Untersuchung und Aufarbeitung des menschlichen Ejakulates, 5. Aufl. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  111. 111.

    Wu YQ, Rao M, Hu SF, Ke DD, Zhu CH, Xia W (2020) Effect of transient scrotal hyperthermia on human sperm: an iTRAQ-based proteomic analysis. Reprod Biol Endocrinol 18(1):83.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Zilberlicht A, Wiener-Megnazi Z, Sheinfeld Y, Grach B, Lahav-Baratz S, Dirnfeld M (2015) Habits of cell phone usage and sperm quality—does it warrant attention? Reprod Biomed Online 31(3):421–426

    PubMed  Google Scholar 

  113. 113.

    Zitzmann M et al (2003) Male smokers have a decreased success rate for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 79:1550–1554

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Prof. Dr. Hans-Christian Schuppe.

Ethics declarations


F.-M. Köhn und H.-C. Schuppe geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Aktualisierte Version der Originalpublikation von Schuppe HC, Köhn FM (2018) Einfluss von Lebensstil und Umweltfaktoren auf die reproduktive Gesundheit des Mannes. Hautarzt 69:996–1005.


B. Sonntag, Hamburg

G. Emons, Göttingen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Köhn, FM., Schuppe, HC. Der Einfluss von Umweltfaktoren und Lebensstil auf die männliche Fertilität. Gynäkologe 54, 260–272 (2021).

Download citation


  • Spermatogenese
  • Noxen
  • Spermien
  • Ejakulat
  • Pharmaka


  • Spermatogenesis
  • Toxicants
  • Sperm
  • Semen
  • Drugs