Umweltgifte und ihre hormonelle Wirkung

Environmental toxins and their hormonal effect

Zusammenfassung

In den letzten Jahrzehnten nimmt die Belastung des Menschen durch chemische Substanzen mit endokriner Wirkung zu. Der Körper nimmt diese Stoffe aus der Luft, dem Wasser, durch unsere Nahrung oder über Körperpflegeartikel auf. Dabei sind konkrete Veränderungen im Organismus zunehmend nachweisbar. Die Folgen, besonders die Langzeitfolgen, sind jedoch noch nicht absehbar. Eine direkte hormonelle Wirkung wird nur bestimmten Stoffen zugeschrieben, die aber im Gegensatz zu herkömmlichen Giften in ihrer Wirkweise deutlich komplexer sind und über die Effekte auf die Keimzellbahn sowohl in der empfindlichen fetalen und neonatalen Periode als auch in nachfolgenden Generationen wirken können. Hier sind besonders Phthalate und Bisphenol A zu nennen. Der Nachweis spezifischer hormoneller Störungen für einzelne Substanzen erscheint überschaubar, die Interaktion der verschiedenen Substanzen ist jedoch nur unzulänglich analysiert und auch nur schwer messbar. Der Beitrag gibt eine Übersicht der bekanntesten Substanzgruppen mit endokriner Wirkung, ihrer individuellen Wirkweise, ihres Vorkommens und einiger bisher nachgewiesener Effekte im Tierversuch und beim Menschen mit einem Fokus auf weibliche reproduktive Organe und Erkrankungen.

Abstract

The contamination of humans by chemical substances that have endocrine effects (endocrine disruptors) has increased during the last decades. Humans absorb these substances from the environment (air, water, food and personal care products) leading to increasingly measurable changes; however, the sequelae, particularly the long-term effects are not clearly foreseeable. Endocrine disruptors are a group of toxins with a more complex mechanism of action and their effects on germ cells not only affect the sensitive fetal and neonatal periods but also the developing adult and possibly also subsequent generations. In this context phthalates and bisphenol A have been particularly incriminated. One of the dangers in measuring concentrations and effects of endocrine disruptors is that similar to natural hormones, they do not follow a classical dose-response curve, which makes interactions of different substances and their effects even more difficult to analyze and understand. This article gives an overview of the most common endocrine disruptors as well as some of their known effects in animals and humans with a focus on female reproductive organs and diseases.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Ajj H, Chesnel A, Pinel S et al (2013) An alkylphenol mix promotes seminoma derived cell proliferation through an ERalpha36-mediated mechanism. PLoS One 8:e61758

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Apelberg BJ, Witter FR, Herbstman JB et al (2007) Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 115:1670–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Arcadi FA, Costa C, Imperatore C et al (1998) Oral toxicity of bis(2-ethylhexyl) phthalate during pregnancy and suckling in the Long-Evans rat. Food Chem Toxicol 36:963–970

    CAS  PubMed  Google Scholar 

  4. 4.

    Bonefeld-Jorgensen EC, Long M, Hofmeister MV et al (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4‑n-nonylphenol, and 4‑n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115(1):69–76

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bornehag CG, Nanberg E (2010) Phthalate exposure and asthma in children. Int J Androl 33:333–345

    CAS  PubMed  Google Scholar 

  6. 6.

    Bretveld RW, Thomas CM, Scheepers PT et al (2006) Pesticide exposure: the hormonal function of the female reproductive system disrupted? Reprod Biol Endocrinol 4:30

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Calafat AM, Weuve J, Ye X et al (2009) Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect 117:639–644

    CAS  PubMed  Google Scholar 

  8. 8.

    Cano-Sancho G, Ploteau S, Matta K et al (2019) Human epidemiological evidence about the associations between exposure to organochlorine chemicals and endometriosis: systematic review and meta-analysis. Environ Int 123:209–223

    CAS  PubMed  Google Scholar 

  9. 9.

    Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162

    CAS  PubMed  Google Scholar 

  10. 10.

    Chan JK, Wong MH (2013) A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. Sci Total Environ 463–464:1111–1123

    PubMed  Google Scholar 

  11. 11.

    Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ding D, Xu L, Fang H et al (2010) The EDKB: an established knowledge base for endocrine disrupting chemicals. BMC Bioinformatics 11(6):S5

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Dodds EC (1936) The pharmacological action and clinical use of drugs with a camphor- and coramine-like action: (section of therapeutics and pharmacology). Proc R Soc Med 29:655–657

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Eladak S, Grisin T, Moison D et al (2015) A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 103:11–21

    CAS  PubMed  Google Scholar 

  15. 15.

    Fisher BG, Thankamony A, Mendiola J et al (2020) Maternal serum concentrations of bisphenol A and propyl paraben in early pregnancy are associated with male infant genital development. Hum Reprod 35:913–928

    CAS  PubMed  Google Scholar 

  16. 16.

    Foster PM (2006) Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl 29:140–147 (discussion 181–145)

    CAS  PubMed  Google Scholar 

  17. 17.

    Frederiksen H, Skakkebaek NE, Andersson AM (2007) Metabolism of phthalates in humans. Mol Nutr Food Res 51:899–911

    CAS  PubMed  Google Scholar 

  18. 18.

    Frumkin H (2003) Agent Orange and cancer: an overview for clinicians. CA Cancer J Clin 53:245–255

    PubMed  Google Scholar 

  19. 19.

    Fuentes S, Colomina MT, Vicens P et al (2007) Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci 98:589–598

    CAS  PubMed  Google Scholar 

  20. 20.

    Gerhard I, Runnebaum B (1992) The limits of hormone substitution in pollutant exposure and fertility disorders. Zentralbl Gynakol 114:593–602

    CAS  PubMed  Google Scholar 

  21. 21.

    Gerona R, vom Saal FS, Hunt PA (2020) BPA: have flawed analytical techniques compromised risk assessments? Lancet Diabetes Endocrinol 8(1):11–13. https://doi.org/10.1016/S2213-8587(19)30381-X

    Article  PubMed  Google Scholar 

  22. 22.

    Gore AC, Chappell VA, Fenton SE et al (2015) EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36:E1–E150

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    PubMed  Google Scholar 

  24. 24.

    James-Todd T, Stahlhut R, Meeker JD et al (2012) Urinary phthalate metabolite concentrations and diabetes among women in the national health and nutrition examination survey (NHANES) 2001–2008. Environ Health Perspect 120:1307–1313

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kahn LG, Philippat C, Nakayama SF et al (2020) Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 8:703–718

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    La Merrill MA, Vandenberg LN, Smith MT et al (2020) Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 16:45–57

    CAS  PubMed  Google Scholar 

  27. 27.

    Lang IA, Galloway TS, Scarlett A et al (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300:1303–1310

    CAS  PubMed  Google Scholar 

  28. 28.

    Lee DH, Lee IK, Porta M et al (2007) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the national health and nutrition examination survey 1999–2002. Diabetologia 50:1841–1851

    CAS  PubMed  Google Scholar 

  29. 29.

    Li LH, Jester WF Jr., Orth JM (1998) Effects of relatively low levels of mono-(2-ethylhexyl) phthalate on cocultured Sertoli cells and gonocytes from neonatal rats. Toxicol Appl Pharmacol 153:258–265

    CAS  PubMed  Google Scholar 

  30. 30.

    Lopez-Espinosa MJ, Freire C, Arrebola JP et al (2009) Nonylphenol and octylphenol in adipose tissue of women in southern Spain. Chemosphere 76:847–852

    CAS  PubMed  Google Scholar 

  31. 31.

    Luebker DJ, York RG, Hansen KJ et al (2005) Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology 215:149–169

    CAS  PubMed  Google Scholar 

  32. 32.

    Main KM, Skakkebaek NE, Toppari J (2009) Cryptorchidism as part of the testicular dysgenesis syndrome: the environmental connection. Endocr Dev 14:167–173

    CAS  PubMed  Google Scholar 

  33. 33.

    Mayani A, Barel S, Soback S et al (1997) Dioxin concentrations in women with endometriosis. Hum Reprod 12:373–375

    CAS  PubMed  Google Scholar 

  34. 34.

    Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci 364:2097–2113

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mendola P, Buck GM, Sever LE et al (1997) Consumption of PCB-contaminated freshwater fish and shortened menstrual cycle length. Am J Epidemiol 146:955–960

    CAS  PubMed  Google Scholar 

  36. 36.

    Ngo AD, Taylor R, Roberts CL et al (2006) Association between Agent Orange and birth defects: systematic review and meta-analysis. Int J Epidemiol 35:1220–1230

    PubMed  Google Scholar 

  37. 37.

    Park SK, Son HK, Lee SK et al (2010) Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. J Prev Med Public Health 43:1–8

    PubMed  Google Scholar 

  38. 38.

    Richter CA, Birnbaum LS, Farabollini F et al (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Salehi F, Turner MC, Phillips KP et al (2008) Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. J Toxicol Environ Health B Crit Rev 11:276–300

    CAS  PubMed  Google Scholar 

  40. 40.

    Shi Z, Ding L, Zhang H et al (2009) Chronic exposure to perfluorododecanoic acid disrupts testicular steroidogenesis and the expression of related genes in male rats. Toxicol Lett 188:192–200

    CAS  PubMed  Google Scholar 

  41. 41.

    Singer P (1949) Occupational oligospermia. JAMA 140:1249

    Google Scholar 

  42. 42.

    Soares A, Guieysse B, Jefferson B et al (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    CAS  PubMed  Google Scholar 

  43. 43.

    Sonnenschein C, Szelei J, Nye TL et al (1994) Control of cell proliferation of human breast MCF7 cells; serum and estrogen resistant variants. Oncol Res 6:373–381

    CAS  PubMed  Google Scholar 

  44. 44.

    Soto AM, Justicia H, Wray JW et al (1991) p‑Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–173

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Spaulding SW (2011) The possible roles of environmental factors and the aryl hydrocarbon receptor in the prevalence of thyroid diseases in Vietnam era veterans. Curr Opin Endocrinol Diabetes Obes 18:315–320

    CAS  PubMed  Google Scholar 

  46. 46.

    Sriphrapradang C, Chailurkit LO, Aekplakorn W et al (2013) Association between bisphenol A and abnormal free thyroxine level in men. Endocrine 44:441–447

    CAS  PubMed  Google Scholar 

  47. 47.

    Swan SH, Main KM, Liu F et al (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113:1056–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Takeuchi T, Tsutsumi O, Ikezuki Y et al (2004) Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 51:165–169

    CAS  PubMed  Google Scholar 

  49. 49.

    Ulutas OK, Cok I, Darendeliler F et al (2015) Blood levels of polychlorinated biphenlys and organochlorinated pesticides in women from Istanbul, Turkey. Environ Monit Assess 187:132

    PubMed  Google Scholar 

  50. 50.

    Waring RH, Harris RM (2005) Endocrine disrupters: a human risk? Mol Cell Endocrinol 244:2–9

    CAS  PubMed  Google Scholar 

  51. 51.

    You L (2004) Steroid hormone biotransformation and xenobiotic induction of hepatic steroid metabolizing enzymes. Chem Biol Interact 147:233–246

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roxana M. Popovici.

Ethics declarations

Interessenkonflikt

R. M. Popovici und B. Sonntag geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Aktualisierte Version der Originalpublikation von Popovici, R (2015) Endokrin wirkende Umweltgifte. Gynäkologische Endokrinologie 13:168–174. https://doi.org/10.1007/s10304-015-0020-8.

Redaktion

B. Sonntag, Hamburg

G. Emons, Göttingen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popovici, R.M., Sonntag, B. Umweltgifte und ihre hormonelle Wirkung. Gynäkologe 54, 246–252 (2021). https://doi.org/10.1007/s00129-020-04741-w

Download citation

Schlüsselwörter

  • Endokrine Disruptoren
  • Pestizide
  • Dioxine
  • Bisphenol A
  • Phthalate

Keywords

  • Endocrine disruptors
  • Pesticides
  • Dioxins
  • Bisphenol
  • Phthalates