Zusammenfassung
In den letzten Jahrzehnten nimmt die Belastung des Menschen durch chemische Substanzen mit endokriner Wirkung zu. Der Körper nimmt diese Stoffe aus der Luft, dem Wasser, durch unsere Nahrung oder über Körperpflegeartikel auf. Dabei sind konkrete Veränderungen im Organismus zunehmend nachweisbar. Die Folgen, besonders die Langzeitfolgen, sind jedoch noch nicht absehbar. Eine direkte hormonelle Wirkung wird nur bestimmten Stoffen zugeschrieben, die aber im Gegensatz zu herkömmlichen Giften in ihrer Wirkweise deutlich komplexer sind und über die Effekte auf die Keimzellbahn sowohl in der empfindlichen fetalen und neonatalen Periode als auch in nachfolgenden Generationen wirken können. Hier sind besonders Phthalate und Bisphenol A zu nennen. Der Nachweis spezifischer hormoneller Störungen für einzelne Substanzen erscheint überschaubar, die Interaktion der verschiedenen Substanzen ist jedoch nur unzulänglich analysiert und auch nur schwer messbar. Der Beitrag gibt eine Übersicht der bekanntesten Substanzgruppen mit endokriner Wirkung, ihrer individuellen Wirkweise, ihres Vorkommens und einiger bisher nachgewiesener Effekte im Tierversuch und beim Menschen mit einem Fokus auf weibliche reproduktive Organe und Erkrankungen.
Abstract
The contamination of humans by chemical substances that have endocrine effects (endocrine disruptors) has increased during the last decades. Humans absorb these substances from the environment (air, water, food and personal care products) leading to increasingly measurable changes; however, the sequelae, particularly the long-term effects are not clearly foreseeable. Endocrine disruptors are a group of toxins with a more complex mechanism of action and their effects on germ cells not only affect the sensitive fetal and neonatal periods but also the developing adult and possibly also subsequent generations. In this context phthalates and bisphenol A have been particularly incriminated. One of the dangers in measuring concentrations and effects of endocrine disruptors is that similar to natural hormones, they do not follow a classical dose-response curve, which makes interactions of different substances and their effects even more difficult to analyze and understand. This article gives an overview of the most common endocrine disruptors as well as some of their known effects in animals and humans with a focus on female reproductive organs and diseases.
This is a preview of subscription content, access via your institution.
Literatur
Ajj H, Chesnel A, Pinel S et al (2013) An alkylphenol mix promotes seminoma derived cell proliferation through an ERalpha36-mediated mechanism. PLoS One 8:e61758
Apelberg BJ, Witter FR, Herbstman JB et al (2007) Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 115:1670–1676
Arcadi FA, Costa C, Imperatore C et al (1998) Oral toxicity of bis(2-ethylhexyl) phthalate during pregnancy and suckling in the Long-Evans rat. Food Chem Toxicol 36:963–970
Bonefeld-Jorgensen EC, Long M, Hofmeister MV et al (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4‑n-nonylphenol, and 4‑n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115(1):69–76
Bornehag CG, Nanberg E (2010) Phthalate exposure and asthma in children. Int J Androl 33:333–345
Bretveld RW, Thomas CM, Scheepers PT et al (2006) Pesticide exposure: the hormonal function of the female reproductive system disrupted? Reprod Biol Endocrinol 4:30
Calafat AM, Weuve J, Ye X et al (2009) Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect 117:639–644
Cano-Sancho G, Ploteau S, Matta K et al (2019) Human epidemiological evidence about the associations between exposure to organochlorine chemicals and endometriosis: systematic review and meta-analysis. Environ Int 123:209–223
Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162
Chan JK, Wong MH (2013) A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. Sci Total Environ 463–464:1111–1123
Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384
Ding D, Xu L, Fang H et al (2010) The EDKB: an established knowledge base for endocrine disrupting chemicals. BMC Bioinformatics 11(6):S5
Dodds EC (1936) The pharmacological action and clinical use of drugs with a camphor- and coramine-like action: (section of therapeutics and pharmacology). Proc R Soc Med 29:655–657
Eladak S, Grisin T, Moison D et al (2015) A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 103:11–21
Fisher BG, Thankamony A, Mendiola J et al (2020) Maternal serum concentrations of bisphenol A and propyl paraben in early pregnancy are associated with male infant genital development. Hum Reprod 35:913–928
Foster PM (2006) Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl 29:140–147 (discussion 181–145)
Frederiksen H, Skakkebaek NE, Andersson AM (2007) Metabolism of phthalates in humans. Mol Nutr Food Res 51:899–911
Frumkin H (2003) Agent Orange and cancer: an overview for clinicians. CA Cancer J Clin 53:245–255
Fuentes S, Colomina MT, Vicens P et al (2007) Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci 98:589–598
Gerhard I, Runnebaum B (1992) The limits of hormone substitution in pollutant exposure and fertility disorders. Zentralbl Gynakol 114:593–602
Gerona R, vom Saal FS, Hunt PA (2020) BPA: have flawed analytical techniques compromised risk assessments? Lancet Diabetes Endocrinol 8(1):11–13. https://doi.org/10.1016/S2213-8587(19)30381-X
Gore AC, Chappell VA, Fenton SE et al (2015) EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36:E1–E150
Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194
James-Todd T, Stahlhut R, Meeker JD et al (2012) Urinary phthalate metabolite concentrations and diabetes among women in the national health and nutrition examination survey (NHANES) 2001–2008. Environ Health Perspect 120:1307–1313
Kahn LG, Philippat C, Nakayama SF et al (2020) Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 8:703–718
La Merrill MA, Vandenberg LN, Smith MT et al (2020) Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 16:45–57
Lang IA, Galloway TS, Scarlett A et al (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300:1303–1310
Lee DH, Lee IK, Porta M et al (2007) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the national health and nutrition examination survey 1999–2002. Diabetologia 50:1841–1851
Li LH, Jester WF Jr., Orth JM (1998) Effects of relatively low levels of mono-(2-ethylhexyl) phthalate on cocultured Sertoli cells and gonocytes from neonatal rats. Toxicol Appl Pharmacol 153:258–265
Lopez-Espinosa MJ, Freire C, Arrebola JP et al (2009) Nonylphenol and octylphenol in adipose tissue of women in southern Spain. Chemosphere 76:847–852
Luebker DJ, York RG, Hansen KJ et al (2005) Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology 215:149–169
Main KM, Skakkebaek NE, Toppari J (2009) Cryptorchidism as part of the testicular dysgenesis syndrome: the environmental connection. Endocr Dev 14:167–173
Mayani A, Barel S, Soback S et al (1997) Dioxin concentrations in women with endometriosis. Hum Reprod 12:373–375
Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci 364:2097–2113
Mendola P, Buck GM, Sever LE et al (1997) Consumption of PCB-contaminated freshwater fish and shortened menstrual cycle length. Am J Epidemiol 146:955–960
Ngo AD, Taylor R, Roberts CL et al (2006) Association between Agent Orange and birth defects: systematic review and meta-analysis. Int J Epidemiol 35:1220–1230
Park SK, Son HK, Lee SK et al (2010) Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. J Prev Med Public Health 43:1–8
Richter CA, Birnbaum LS, Farabollini F et al (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224
Salehi F, Turner MC, Phillips KP et al (2008) Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. J Toxicol Environ Health B Crit Rev 11:276–300
Shi Z, Ding L, Zhang H et al (2009) Chronic exposure to perfluorododecanoic acid disrupts testicular steroidogenesis and the expression of related genes in male rats. Toxicol Lett 188:192–200
Singer P (1949) Occupational oligospermia. JAMA 140:1249
Soares A, Guieysse B, Jefferson B et al (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049
Sonnenschein C, Szelei J, Nye TL et al (1994) Control of cell proliferation of human breast MCF7 cells; serum and estrogen resistant variants. Oncol Res 6:373–381
Soto AM, Justicia H, Wray JW et al (1991) p‑Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–173
Spaulding SW (2011) The possible roles of environmental factors and the aryl hydrocarbon receptor in the prevalence of thyroid diseases in Vietnam era veterans. Curr Opin Endocrinol Diabetes Obes 18:315–320
Sriphrapradang C, Chailurkit LO, Aekplakorn W et al (2013) Association between bisphenol A and abnormal free thyroxine level in men. Endocrine 44:441–447
Swan SH, Main KM, Liu F et al (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113:1056–1061
Takeuchi T, Tsutsumi O, Ikezuki Y et al (2004) Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 51:165–169
Ulutas OK, Cok I, Darendeliler F et al (2015) Blood levels of polychlorinated biphenlys and organochlorinated pesticides in women from Istanbul, Turkey. Environ Monit Assess 187:132
Waring RH, Harris RM (2005) Endocrine disrupters: a human risk? Mol Cell Endocrinol 244:2–9
You L (2004) Steroid hormone biotransformation and xenobiotic induction of hepatic steroid metabolizing enzymes. Chem Biol Interact 147:233–246
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
R. M. Popovici und B. Sonntag geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Additional information
Redaktion
B. Sonntag, Hamburg
G. Emons, Göttingen
Aktualisierte Version der Originalpublikation von Popovici, R (2015) Endokrin wirkende Umweltgifte. Gynäkologische Endokrinologie 13:168–174. https://doi.org/10.1007/s10304-015-0020-8.
Rights and permissions
About this article
Cite this article
Popovici, R.M., Sonntag, B. Umweltgifte und ihre hormonelle Wirkung. Gynäkologe 54, 246–252 (2021). https://doi.org/10.1007/s00129-020-04741-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00129-020-04741-w
Schlüsselwörter
- Endokrine Disruptoren
- Pestizide
- Dioxine
- Bisphenol A
- Phthalate
Keywords
- Endocrine disruptors
- Pesticides
- Dioxins
- Bisphenol
- Phthalates