Umwelteinflüsse und gynäkologische Karzinome

Environmental factors and gynecological cancers

Zusammenfassung

Das Leben in der modernen Welt ist eng mit der Exposition gegenüber Umweltfaktoren verknüpft, die auf physikalische oder chemische Weise das Risiko einer Krebserkrankung erhöhen. Das gilt auch für Brustkrebs und die weiblichen Genitalkarzinome. Von besonderem Interesse sind Chemikalien, die, ohne selber Hormone zu sein, hormonelle Regulationsprozesse beeinflussen. Sie werden als „endokrine Disruptoren“ oder „hormonell aktive Agentien“ bezeichnet. Ihre hormonartigen Wirkungen treiben die Proliferationsprozesse östrogenresponsiver Zellen. Damit wirken diese Substanzen als Promotoren initiierter Krebszellen. Wenn diese Substanzen zu bestimmten, besonders vulnerablen Phasen der Individualentwicklung einwirken, zum Beispiel in der Fetalentwicklung oder in der peripuberalen Ausprägung der sekundären Geschlechtsmerkmale, können diese Entwicklungsprozesse in pathologischer Weise geprimed werden. So werden zu sehr viel späteren Zeiten Krebserkrankungen ausgelöst oder begünstigt. Selbst eine generationenübergreifende Kanzerogenese ist beschrieben worden. Chemikalien mit eindeutiger karzinogener Wirkung, wie die polyzyklischen aromatischen Kohlenwasserstoffe, die beispielsweise Teer- und Teerprodukte kontaminieren, wirken lokal und systemisch karzinogen und begünstigen damit die Entstehung von Brust- und Genitalkarzinomen. Unter den physikalischen karzinogenen Faktoren sind extrem niederfrequente Magnetwechselfelder („extremely low-frequency electromagnetic field“, ELF – EMF) und Licht in der Nacht zu beachten. Abschließend werden Rauchen und Alkohol Konsum in ihrer Beziehung zu Brust- und Genitalkarzinomen diskutiert.

Abstract

Modern life is inevitably associated with exposure to environmental factors, both physical and chemical, that have been correlated with elevating the risk of developing cancer. The same applies, but not exclusively, to breast and female genital cancers. Of particular interest are chemicals that exert hormonal effects and are consequentially termed “endocrine disruptors” or “hormonally active agents”. These hormonally disrupting properties enable these agents to drive estrogen-dependent proliferation, thereby enabling them to act as promotors of initiated cancer cells. More intriguingly, they can also prime developmental pathways towards carcinogenesis if the individual is exposed during particularly vulnerable stages of, e.g., fetal or pubertal development. Even trans-generation carcinogenic effects have been reported. Chemicals with overt cancerogenic activity, such as polycyclic hydrocarbons, which contaminate tar and its products, locally and systemically cause cancer. Physical cancerogenic factors include extremely low frequency alternating field radiation (ELF-EMF) and light at night. Lastly, smoking and alcohol consumption and their contribution to breast and genital carcinogenesis are discussed.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Aguayo F, Munoz JP, Perez-Dominguez F et al (2020) High-risk human papillomavirus and tobacco smoke interactions in epithelial carcinogenesis. Cancers (Basel). https://doi.org/10.3390/cancers12082201

    Article  PubMed Central  Google Scholar 

  2. 2.

    Amadou A, Coudon T, Praud D et al (2020) Chronic low-dose exposure to xenoestrogen ambient air pollutants and breast cancer risk: XENAIR protocol for a case-control study nested within the French E3N cohort. JMIR Res Protoc 9:e15167. https://doi.org/10.2196/15167

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bailey LB (2003) Folate, methyl-related nutrients, alcohol, and the MTHFR 677C--〉T polymorphism affect cancer risk: intake recommendations. J Nutr 133:3748s–3753s. https://doi.org/10.1093/jn/133.11.3748S

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Behrens T, Rabstein S, Wichert K et al (2017) Shift work and the incidence of prostate cancer: a 10-year follow-up of a German population-based cohort study. Scand J Work Environ Health. https://doi.org/10.5271/sjweh.3666

    Article  PubMed  Google Scholar 

  5. 5.

    Bennicke K, Conrad C, Sabroe S et al (1995) Cigarette smoking and breast cancer. BMJ 310:1431–1433. https://doi.org/10.1136/bmj.310.6992.1431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bronowicka-Klys DE, Lianeri M, Jagodzinski PP (2016) The role and impact of estrogens and xenoestrogen on the development of cervical cancer. Biomed Pharmacother 84:1945–1953. https://doi.org/10.1016/j.biopha.2016.11.007

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Chen Q, Lang L, Wu W et al (2013) A meta-analysis on the relationship between exposure to ELF-EMFs and the risk of female breast cancer. PLoS One 8:e69272. https://doi.org/10.1371/journal.pone.0069272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cohn BA, La Merrill M, Krigbaum NY et al (2015) DDT exposure in utero and breast cancer. J Clin Endocrinol Metab 100:2865–2872. https://doi.org/10.1210/jc.2015-1841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cohn BA, Terry MB, Plumb M et al (2012) Exposure to polychlorinated biphenyl (PCB) congeners measured shortly after giving birth and subsequent risk of maternal breast cancer before age 50. Breast Cancer Res Treat 136:267–275. https://doi.org/10.1007/s10549-012-2257-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cohn BA, Wolff MS, Cirillo PM et al (2007) DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect 115:1406–1414. https://doi.org/10.1289/ehp.10260

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Croghan IT, Pruthi S, Hays JT et al (2009) The role of smoking in breast cancer development: an analysis of a Mayo Clinic cohort. Breast J 15:489–495. https://doi.org/10.1111/j.1524-4741.2009.00764.x

    Article  PubMed  Google Scholar 

  12. 12.

    Dumitrascu MC, Mares C, Petca RC et al (2020) Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 20:282. https://doi.org/10.3892/ol.2020.12145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Feng RM, Hu SY, Zhao FH et al (2017) Role of active and passive smoking in high-risk human papillomavirus infection and cervical intraepithelial neoplasia grade 2 or worse. J Gynecol Oncol 28:e47. https://doi.org/10.3802/jgo.2017.28.e47

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gao H, Yang BJ, Li N et al (2015) Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine 94:e211. https://doi.org/10.1097/MD.0000000000000211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Garcia-Saenz A, Sánchez de Miguel A, Espinosa A et al (2018) Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain study). Environ Health Perspect 126:47011. https://doi.org/10.1289/ehp1837

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gibson DA, Saunders PT (2014) Endocrine disruption of oestrogen action and female reproductive tract cancers. Endocr Relat Cancer 21:T13–31. https://doi.org/10.1530/ERC-13-0342

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hanchette C, Zhang CH, Schwartz GG (2018) Ovarian cancer incidence in the U.S. and toxic emissions from pulp and paper plants: a geospatial analysis. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15081619

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hanf V, Körner W (2010) Mammakarzinom und Umweltfaktoren. In: Mammakarzinom Interdisziplinär. Springer, Berlin, Heidelberg, S 11–24 https://doi.org/10.1007/978-3-642-12681-9_2

    Google Scholar 

  19. 19.

    Hansen J (2017) Night shift work and risk of breast cancer. Curr Environ Health Rep 4:325–339. https://doi.org/10.1007/s40572-017-0155-y

    Article  PubMed  Google Scholar 

  20. 20.

    Haverkos HW, Haverkos GP, O’Mara M (2017) Co-carcinogenesis: human papillomaviruses, coal tar derivatives, and squamous cell cervical cancer. Front Microbiol 8:2253. https://doi.org/10.3389/fmicb.2017.02253

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hernandez-Silva CD, Villegas-Pineda JC, Pereira-Suarez AL (2020) Expression and role of the G protein-coupled estrogen receptor (GPR30/GPER) in the development and immune response in female reproductive cancers. Front Endocrinol (Lausanne) 11:544. https://doi.org/10.3389/fendo.2020.00544

    Article  Google Scholar 

  22. 22.

    Jacob L, Freyn M, Kalder M et al (2018) Impact of tobacco smoking on the risk of developing 25 different cancers in the UK: a retrospective study of 422,010 patients followed for up to 30 years. Oncotarget 9:17420–17429. https://doi.org/10.18632/oncotarget.24724

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Knight JA, Bernstein L, Largent J et al (2009) Alcohol intake and cigarette smoking and risk of a contralateral breast cancer: the women’s environmental cancer and radiation epidemiology study. Epidemiol Rev 169:962–968. https://doi.org/10.1093/aje/kwn422

    Article  Google Scholar 

  24. 24.

    Lanneau GS, Argenta PA, Lanneau MS et al (2009) Vulvar cancer in young women: demographic features and outcome evaluation. Am J Obstet Gynecol 200:645.e1–645.e5. https://doi.org/10.1016/j.ajog.2009.01.014

    Article  Google Scholar 

  25. 25.

    Luberto F, Ferrante D, Silvestri S et al (2019) Cumulative asbestos exposure and mortality from asbestos related diseases in a pooled analysis of 21 asbestos cement cohorts in Italy. Environ Health 18:71. https://doi.org/10.1186/s12940-019-0510-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mallozzi M, Leone C, Manurita F et al (2017) Endocrine disrupting chemicals and endometrial cancer: an overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14030334

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Morabia A, Bernstein M, Heritier S et al (1996) Relation of breast cancer with passive and active exposure to tobacco smoke. Am J Epidemiol 143:918–928

    CAS  Article  Google Scholar 

  28. 28.

    Mordukhovich I, Beyea J, Herring AH et al (2016) Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence. Int J Cancer 139:310–321. https://doi.org/10.1002/ijc.30079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Mouly TA, Toms LL (2016) Breast cancer and persistent organic pollutants (excluding DDT): a systematic literature review. Environ Sci Pollut Res Int 23:22385–22407. https://doi.org/10.1007/s11356-016-7577-1

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    O’Brien KM, Tworoger SS, Harris HR et al (2020) Association of powder use in the genital area with risk of ovarian cancer. JAMA 323:49–59. https://doi.org/10.1001/jama.2019.20079

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Papantoniou K, Castaño-Vinyals G, Espinosa A et al (2016) Breast cancer risk and night shift work in a case-control study in a Spanish population. Eur J Epidemiol 31:867–878. https://doi.org/10.1007/s10654-015-0073-y

    Article  PubMed  Google Scholar 

  32. 32.

    Polesel J, Serraino D, Zucchetto A et al (2009) Cigarette smoking and endometrial cancer risk: the modifying effect of obesity. Eur J Cancer Prev 18:476–481. https://doi.org/10.1097/CEJ.0b013e32832f9bc4

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Praestegaard C, Jensen A, Jensen SM et al (2017) Cigarette smoking is associated with adverse survival among women with ovarian cancer: results from a pooled analysis of 19 studies. Int J Cancer 140:2422–2435. https://doi.org/10.1002/ijc.30600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Rachon D (2015) Endocrine disrupting chemicals (EDcs) and female cancer: informing the patients. Rev Endocr Metab Disord 16:359–364. https://doi.org/10.1007/s11154-016-9332-9

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Rodgers KM, Udesky JO, Rudel RA et al (2018) Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res 160:152–182. https://doi.org/10.1016/j.envres.2017.08.045

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Schwarz C, Pedraza-Flechas AM, Lope V et al (2018) Gynaecological cancer and night shift work: a systematic review. Maturitas 110:21–28. https://doi.org/10.1016/j.maturitas.2018.01.008

    Article  PubMed  Google Scholar 

  37. 37.

    Shen J, Liao Y, Hopper JL et al (2017) Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br J Cancer 116:1229–1233. https://doi.org/10.1038/bjc.2017.81

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Siokos AG, Siokou-Siova O, Tzafetas I (2019) Correlation between cervical carcinogenesis and tobacco use by sexual partners. Hell J Nucl Med 22(2):184–190

    PubMed  Google Scholar 

  39. 39.

    Straif K, Baan R, Grosse Y et al (2007) Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8:1065–1066. https://doi.org/10.1016/s1470-2045(07)70373-x

    Article  PubMed  Google Scholar 

  40. 40.

    Sugawara Y, Tsuji I, Mizoue T et al (2019) Cigarette smoking and cervical cancer risk: an evaluation based on a systematic review and meta-analysis among Japanese women. Jpn J Clin Oncol 49:77–86. https://doi.org/10.1093/jjco/hyy158

    CAS  Article  Google Scholar 

  41. 41.

    Unfer V, Casini ML, Costabile L et al (2004) Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril 82:145–148. https://doi.org/10.1016/j.fertnstert.2003.11.041 (quiz 265)

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Zhang C, Luo Y, Zhong R et al (2019) Role of polycyclic aromatic hydrocarbons as a co-factor in human papillomavirus-mediated carcinogenesis. BMC Cancer 19:138. https://doi.org/10.1186/s12885-019-5347-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zhang Y, Birmann BM, Han J et al (2020) Personal use of permanent hair dyes and cancer risk and mortality in US women: prospective cohort study. BMJ 370:m2942. https://doi.org/10.1136/bmj.m2942

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. Günter Emons.

Ethics declarations

Interessenkonflikt

V. Hanf und G. Emons geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

B. Sonntag, Hamburg

G. Emons, Göttingen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanf, V., Emons, G. Umwelteinflüsse und gynäkologische Karzinome. Gynäkologe (2021). https://doi.org/10.1007/s00129-020-04736-7

Download citation

Schlüsselwörter

  • Endokrine Disruptoren
  • Östrogene
  • Rauchen
  • Karzinogene
  • Alkoholkonsum

Keywords

  • Endocrine disruptors
  • Estrogens
  • Smoking
  • Carcinogens
  • Alcohol use