Skip to main content
Log in

Update Folsäurestoffwechsel

Update on folic acid metabolism

  • Gynäkologie aktuell
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Die Bedeutung einer ausreichenden Versorgung von jungen Frauen im reproduktionsfähigen Alter und von Schwangere ist mittlerweile Teil des Allgemeinwissens, und die Rate an Neuralrohrdefekten konnte effizient gesenkt werden. Doch damit ist die Bedeutung dieses wichtigen Spurenelementes durchaus nicht erschöpft. Thrombophile Zustände in der Schwangerschaft führen zu Plazentationsstörungen mit gehäuften Aborten, fetaler Wachstumsverzögerung und erhöhen das Risiko für Gestosen. Dass hier ein Stoffwechseldefekt im Folsäuremetabolismus eine wichtige Rolle spielt, ist allerdings nur wenig bekannt und erforscht. Der Beitrag beleuchtet neben Grundlagen des Folsäurestoffwechsels auch dessen klinische Bedeutung über die Neuralrohrdefekte hinaus und zeigt neue Ansätze zur optimalen Risikominderung von Schwangerschaftskomplikationen bei Folsäurestoffwechseldefekten auf.

Abstract

Sufficient intake of folic acid is an essential component of the nutrition of young fertile women and during pregnancy. The incidence of neural tube defects can be reduced dramatically; however, further meaningful aspects of folic acid function should be mentioned. Thrombophilic conditions during pregnancy result in placental disorders with recurrent miscarriage, intrauterine growth retardation and preeclampsia. Defects in folic acid metabolic pathways seem to play an important role in the development of these complications. This article focuses on the basic principles of folic acid metabolic pathways and polymorphisms and the clinical importance in the context of complications during pregnancy. New insights into this topic provide optimal risk reduction and patient care in folic acid metabolic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bönstrup A (2007) Folat und Folsäure – Herausforderungen für die Praxis. Ernahrungsumschau 9:538–544

    Google Scholar 

  2. Shane B (2010) Folate chemistry and metabolism. In: Bailey LB (eds) Folate in health and disease, 2. edn. Taylor & Francis, Boca Raton, pp 1–24

  3. IOM (Institute of Medicine) (2000) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. National Academy, Washington/DC, pp 196–305

  4. Obeid R, Holzgreve W, Pietrzik K (2013) Is 5-methyltetrahydrofolate an alternative to folic acid in the prevention of neural tube defects? J Perinat Med 41(5):469–483

    CAS  PubMed  Google Scholar 

  5. Deutsche Gesellschaft für Ernährung e. V. (2013) Referenzwerte für die Nährstoffzufuhr: Folat. Neuer, Neustadt a.d. Weinstr. Umschau, S 127–151. (5. korr. Nachdruck)

  6. Carmel R (2006) Folic Acid. In: Shils M, Shike M, Ross AC (eds) Modern nutrition in health and disease, 10. edn. Lippincott Williams & Wilkins, Baltimore, pp 470–481

  7. Doenecke D, Koolman J, Fuchs G, Gerok W (2005) Karlsons Biochemie und Pathobiochemie, 15. Aufl. Thieme, Stuttgart, S 88–89

  8. Owczarek D, Cibor D, Salapa K et al (2014) Homocysteine in patients with inflammatory bowel diseases. Przegl Lek 71(4):189–192

    PubMed  Google Scholar 

  9. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconeptional vitamin supplementation. N Engl J Med 327:1832–1835

    Article  CAS  PubMed  Google Scholar 

  10. Scholl TO, Johnson WG (2000) Folic acid: Influence on the outcome of pregnancy. Am J Clin Nutr 71(5):1295–1303

    Google Scholar 

  11. Bukowski R, Malone FD, Porter FT et al (2009) Preconception folate supplementation and the risk of spontaneous preterm birth: prospective cohort study. PLoS Med 6(5):e10000061

    Article  Google Scholar 

  12. Gaskins AJ, Rich-Edwards JW, Hauser R et al (2014) Maternal prepregnancy folate intake and the risk of spontaneous abortion and stillbirth. Obstet Gynecol 124(1):23–31

    Article  CAS  PubMed  Google Scholar 

  13. Lassi ZS, Salam RA, Haider BA et al (2013) Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev 3:CD006896

    PubMed  Google Scholar 

  14. Mavrogenis S, Urban R, Czeizel AE, Acs N (2014) Possible preventive effect of high doses of folic acid for isolated hypospadias: a national population-based case-control study. Am J Med Genet A 9999:1–7

    Google Scholar 

  15. Shaw GM, Lammer EJ, Wassermann CR et al (1995) Risks of orafacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 346:393–396

    Article  CAS  PubMed  Google Scholar 

  16. Ströhle A, Wolters M, Willer J et al (2014) Mikronährstoffe in den verschiedenen Lebensphasen der Frau (Teil 3) – Schwangerschaft: Nahrung für einen optimalen Start ins Leben. Gyne 5:33–39

    Google Scholar 

  17. Ohrvik VE, Witthoft CM (2011) Human folate bioavailability. Nutrients 3:475–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tahler CJ (2014) Folate Metabolism and Human Reproduction. Geburtsh Frauenheilk 74:845–851

    Article  Google Scholar 

  19. Idali F, Zareii S, Mohammad-Zadeh A et al (2012) Plasminogen activator inhibitor 1 and methylenetetrahydrofolate reductase gene mutations in Iranian women with polycystic ovary syndrome. Am J Reprod Immunol 68(5):400–407

    Article  CAS  PubMed  Google Scholar 

  20. Gruson D (2003) Cardiovascular diseases and homocysteine, a short summary of a long story. J Int Clin Chem 14:3

    Google Scholar 

  21. Beynum IM van et al (1999) Hyperhomocysteinaemia: a risk factor for ischemic stroke in children. Circulation 99:2070–2072

    Article  PubMed  Google Scholar 

  22. Heckey SE, Curry CJ, Toriello HV (2013) ACMG practice guideline: lack of evidence for MTHFR polymorphism testing. Genet Med 15(2):153–156

    Article  Google Scholar 

  23. Nelen WL (2001) Hyperhomocysteinaemia and human reproduction. Clin Chem Lab Med 39(8):758–763

    Article  CAS  PubMed  Google Scholar 

  24. Fatini C, Gensini F, Battaglini B et al (2000) Angiotensin-converting enzyme DD genotype, angiotensin type 1 receptor CC genotype, and hyperhomocysteinemia increase first-trimester fetal-loss susceptibility. Blood Coagul Fibrinolysis 11(7):657–662

    Article  CAS  PubMed  Google Scholar 

  25. Lissak A, Sharon A, Fruchter O et al (1999) Polymorphism for mutation of cytosine to thymine at location 677 in the methylenetetrahydrofolate reductase gene is associated with recurrent early fetal loss. Am J Obstet Gynecol 181:126–130

    Article  CAS  PubMed  Google Scholar 

  26. Martinelli I, Taioli E, Cetin I et al (2000) Mutations in coagulation factors in women with unexplained late fetal loss. N Engl J Med 343:1015–1018

    Article  CAS  PubMed  Google Scholar 

  27. Nelen WLDM, Molen EF van der, Blom HJ et al (1997) Recurrent early pregnancy loss and genetic-related disturbances in folate and homocysteine metabolism. Br J Hosp Med 58:511–513

    CAS  PubMed  Google Scholar 

  28. Vollset SE, Refsum H, Irgens LM et al (2000) Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study. Am J Clin Nutr 71:962–968

    CAS  PubMed  Google Scholar 

  29. Luxembourg B, Lindhoff-Last E (2007) Genomische Diagnostik thrombophiler Gerinnungsstörungen bei Frauen. Hamostaseologie 27(1):22–31

    CAS  PubMed  Google Scholar 

  30. Robertson L, Wu O, Langhorne P et al (2005) For the Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) Study. Thrombophilia in pregnancy: a systematic review. Br J Haematol 132:171–196

    Article  Google Scholar 

  31. Yadav U, Kumar P, Yadav SK et al (2014) Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis. Metab Brain Dis (PMID: 25005003)

    Google Scholar 

  32. Qublan HS, Eid SS, Ababneh HA et al (2006) Acquired and inherited thrombophilia: implication in recurrent IVF and embryo transfer failure. Hum Reprod 21:2694–2698

    Article  CAS  PubMed  Google Scholar 

  33. Nelen WL, Blom HJ, Thomas CM et al (2008) Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J Nutr 128:1336–1341

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. E. Edeler und A. Heubner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Edeler or A. Heubner.

Additional information

Elisabeth Edeler und Antonia Heubner teilen die Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edeler, E., Heubner, A., Kimmig, R. et al. Update Folsäurestoffwechsel. Gynäkologe 48, 159–163 (2015). https://doi.org/10.1007/s00129-014-3516-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-014-3516-8

Schlüsselwörter

Keywords

Navigation