Skip to main content
Log in

Biomarker in der Pränataldiagnostik

Biomarkers in prenatal diagnostics

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Der Einsatz von Biomarkern spielt in der personalisierten Medizin eine immer größere Rolle. In der Pränataldiagnostik kommen Biomarker im Screening auf Aneuploidien und − in zunehmendem Maß − auch in der Detektion der Präeklampsie zum Einsatz. Beim Screening auf Trisomien können mit einer Kombination aus mütterlichem Alter, der sonographisch bestimmten Dicke der fetalen Nackenfalte und der Bestimmung von schwangerschaftsassoziiertem Plasma-Protein A (PAPP-A) und humanem Choriongonadotropin β (β-HCG) im Serum der Mutter Detektionsraten von 90% bei Falsch-positiv-Raten von 3% erreicht werden. Insbesondere beim Screening auf Trisomie 21 wird in Zukunft durch die Möglichkeit der Bestimmung zellfreier fetaler DNA (cffDNA) im Serum der Mutter eine weitere Reduktion der Rate invasiver Eingriffe zu erwarten sein. Die Messung von löslicher „fms-like tyrosinkinase“ 1 (sFlt-1) und plazentarem Wachstumsfaktor (PlGF) kann eine frühe Präeklampsie mit einer Sensitivität von 89% und einer Spezifität von 97% diagnostizieren. Insbesondere das Auftreten präeklampsieassoziierter Komplikationen kann bei Patientinnen mit klinischem Verdacht auf die Erkrankung zuverlässig mithilfe des sFlt-1/PlGF-Quotienten vorhergesagt werden. Der optimale Zeitpunkt der Früherkennung der Präeklampsie mithilfe angiogener Faktoren, möglicherweise auch anderer Biomarker, wird noch untersucht.

Abstract

Currently, personalized medicine relies largely on biomarkers. In prenatal diagnostics a variety of biomarkers can help to improve detection of fetal aneuploidy as well as prediction of preeclampsia. While clear cut algorithms exist for aneuploidy screening, prospective validation of biomarkers in preeclampsia diagnostics is still underway. The combination of maternal age, thickness of fetal nuchal translucency measured via ultrasound as well as maternal serum levels of pregnancy-associated plasma protein A (PAPP-A) and beta human chorionic gonadotropin (beta HCG) can detect up to 90 % of trisomies with a false positive rate of 3%. Prospectively, the automated measurement of cell-free fetal DNA (cffDNA) will bring a further reduction of invasive diagnostics for trisomy 21. The measurement of soluble fms-like tyrosine kinase 1 (sFlt-1) and placental growth factor (PlGF) can detect early onset preeclampsia with a sensitivity of 89 % and a specificity of 97 %. The measurement of the sFlt-1/PlGF ratio can accurately predict the onset of preeclampsia-associated adverse outcomes. The optimal timing for early recognition of preeclampsia with the help of angiogenic factors or other biomarkers is currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Nicolaides KH (2011) Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn 31:7–15

    Article  PubMed  Google Scholar 

  2. Wald NJ, Kennard A (1992) Prenatal biochemical screening for Down’s syndrome and neural tube defects. Curr Opin Obstet Gynecol 4:302–307

    Article  PubMed  CAS  Google Scholar 

  3. Kagan KO, Cicero S, Staboulidou I et al (2009) Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet Gynecol 33:259–264

    Article  PubMed  CAS  Google Scholar 

  4. Kagan KO, Valencia C, Livanos P et al (2009) Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11+0 to 13+6 weeks of gestation. Ultrasound Obstet Gynecol 33:18–22

    Article  PubMed  CAS  Google Scholar 

  5. Spencer K, Souter V, Tul N et al (1999) A screening program for trisomy 21 at 10–14 weeks using fetal nuchal translucency, maternal serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein A. Ultrasound Obstet Gynecol 13:231–237

    Article  PubMed  CAS  Google Scholar 

  6. Kagan KO, Wright D, Valencia C et al (2008) Screening for trisomies 21, 18 and 13 by maternal age, fetal nuchal translucency, fetal heart rate, free beta-hCG and pregnancy-associated plasma protein A. Hum Reprod 23:1968–1975

    Article  PubMed  CAS  Google Scholar 

  7. Graaf IM de, Pajkrt E, Bilardo CM et al (1999) Early pregnancy screening for fetal aneuploidy with serum markers and nuchal translucency. Prenat Diagn 19:458–462

    Article  PubMed  Google Scholar 

  8. Kagan KO, Etchegaray A, Zhou Y et al (2009) Prospective validation of first-trimester combined screening for trisomy 21. Ultrasound Obstet Gynecol 34:14–18

    Article  PubMed  CAS  Google Scholar 

  9. Kähler CHK, Henrich W, Schramm T (2013) Ultraschall in der Medizin

  10. Nicolaides KH, Syngelaki A, Ashoor G et al (2012) Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol 207:374 e1–374 e6

    Article  PubMed  Google Scholar 

  11. Jeffcoate TN (1966) Pre-eclampsia and eclampsia: the disease of theories. Proc R Soc Med 59:397–404

    PubMed  CAS  Google Scholar 

  12. Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658

    PubMed  CAS  Google Scholar 

  13. Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  PubMed  CAS  Google Scholar 

  14. Levine RJ, Lam C, Qian C et al (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005

    Article  PubMed  CAS  Google Scholar 

  15. Verlohren S, Herraiz I, Lapaire O et al (2012) The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol 206:58 e1–58 e8

    Article  PubMed  Google Scholar 

  16. Verlohren S, Galindo A, Schlembach D et al (2010) An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol 202:161 e1–161 e11

    Article  PubMed  Google Scholar 

  17. Wang A, Rana S, Karumanchi SA (2009) Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology (Bethesda) 24:147–158

    Google Scholar 

  18. Chien PF, Arnott N, Gordon A et al (2000) How useful is uterine artery Doppler flow velocimetry in the prediction of preeclampsia, intrauterine growth retardation and perinatal death? An overview. Br J Obstet Gynecol 107:196–208

    Article  CAS  Google Scholar 

  19. Crispi F, Llurba E, Dominguez C et al. (2008) Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol 31:303−309

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Klebanoff MA, Roberts JM (2001) Prediction of adverse outcomes by common definitions of hypertension in pregnancy. Obstet Gynecol 97:261–267

    Article  PubMed  CAS  Google Scholar 

  21. Rana S, Powe CE, Salahuddin S et al (2012) Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 125:911–919

    Article  PubMed  CAS  Google Scholar 

  22. Sanderson M, Sappenfield WM, Jespersen KM et al (2000) Association between level of delivery hospital and neonatal outcomes among South Carolina Medicaid recipients. Am J Obstet Gynecol 183:1504–1511

    Article  PubMed  CAS  Google Scholar 

  23. Thadhani R, Kisner T, Hagmann H et al (2011) Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 124:940–950

    Article  PubMed  CAS  Google Scholar 

  24. Akolekar R, Syngelaki A, Poon L et al (2013) Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 33:8–15

    Article  PubMed  Google Scholar 

  25. Bujold E, Roberge S, Lacasse Y et al (2010) Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol 116:402–414

    Article  PubMed  Google Scholar 

  26. Villa PM, Kajantie E, Raikkonen K et al (2013) Aspirin in the prevention of pre-eclampsia in high-risk women: a randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG 120:64–74

    Article  PubMed  CAS  Google Scholar 

  27. Nicolaides KH (2011) Turning the pyramid of prenatal care. Fetal Diagn Ther 29:183–196

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seinen Koautor auf folgende Beziehung/en hin: Herr PD Dr. Verlohren erhielt Forschungsgelder sowie Vortragshonorare von Roche Diagnostics und Novartis sowie Vortragshonorare von ThermoFisherScientific.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Verlohren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verlohren, S., Henrich, W. Biomarker in der Pränataldiagnostik. Gynäkologe 46, 397–402 (2013). https://doi.org/10.1007/s00129-012-3131-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-012-3131-5

Schlüsselwörter

Keywords

Navigation