Skip to main content
Log in

Molekulare Karyotypisierung

Molecular Karyotyping

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Unter dem Oberbegriff der molekularen Karyotypisierung werden in der Humangenetik eingesetzte Mikroarray-basierte Methoden zusammengefasst, die in einem einzigen Experiment die hochauflösende Analyse des menschlichen Genoms zum Nachweis von Kopienzahlveränderungen, also Gewinnen und Verlusten von genomischem Material ermöglichen. Diese Methoden haben sich in den letzten Jahren von der Anwendung in der Forschung weiterentwickelt zu einem wichtigen Bestandteil der genetischen Diagnostik. Die molekulare Karyotypisierung wird in Zukunft die konventionelle Chromosomenuntersuchung als ersten Schritt in der zytogenetischen Diagnostik bei unklarer Diagnose ablösen. In diesem Beitrag wird ein kurzer Überblick über die Grundlagen der molekularen Karyotypisierung, die Möglichkeiten und Grenzen dieser Methode sowie die Indikationen für eine Anwendung in der genetischen Diagnostik gegeben.

Abstract

Molecular karyotyping includes microarray-based methods which allow high-resolution analysis of the human genome with respect to copy number changes, i.e., gains and losses of genomic material. In recent years, these methods, which were initially developed for research only, have been adopted as an important tool in genetic diagnostics. It is expected that molecular karyotyping will replace conventional cytogenetics (chromosome analysis) as the first-line analysis in case of unclear clinical diagnosis. This article provides a brief overview on the technical basics of molecular karyotyping, the advantages and challenges, as well as indications for application of this method in genetic diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. (o A) (2009) ISCN 2009: An international system for human cytogenetic nomenclature. S. Karger, Basel

  2. Ballif BC, Rorem EA, Sundin K et al (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A 140:2757–2767

    PubMed  Google Scholar 

  3. Ben-Shachar S, Lanpher B, German JR et al (2009) Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet 46:382–388

    Article  PubMed  CAS  Google Scholar 

  4. Brunetti-Pierri N, Berg JS, Scaglia F et al (2008) Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 40:1466–1471

    Article  PubMed  CAS  Google Scholar 

  5. Cremer T, Landegent J, Bruckner A et al (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet 74:346–352

    Article  PubMed  CAS  Google Scholar 

  6. Darilek S, Ward P, Pursley A et al (2008) Pre- and postnatal genetic testing by array-comparative genomic hybridization: genetic counseling perspectives. Genet Med 10:13–18

    Article  PubMed  CAS  Google Scholar 

  7. Friedman JM, Baross A, Delaney AD et al (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 79:500–513

    Article  PubMed  CAS  Google Scholar 

  8. Helbig I, Mefford HC, Sharp AJ et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162

    Article  PubMed  CAS  Google Scholar 

  9. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  PubMed  CAS  Google Scholar 

  10. Koolen DA, Vissers LE, Pfundt R et al (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38:999–1001

    Article  PubMed  CAS  Google Scholar 

  11. Ledbetter DH, Riccardi VM, Airhart SD et al (1981) Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med 304:325–329

    Article  PubMed  CAS  Google Scholar 

  12. Mefford HC, Sharp AJ, Baker C et al (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359:1685–1699

    Article  PubMed  CAS  Google Scholar 

  13. Meins M, Lehmann J, Gerresheim F et al (2005) Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J Med Genet 42:e12

    Article  PubMed  CAS  Google Scholar 

  14. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  PubMed  CAS  Google Scholar 

  15. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934–2938

    Article  PubMed  CAS  Google Scholar 

  16. Schröck E (2010) Indikationskriterien und Bewertung der Molekularen Karyotypisierung mittels Mikroarray-Analysen für die genetische Diagnostik konstitutioneller DNA-Veränderungen – Grundlagen zur Einführung der Abrechnung der Molekularen Karyotypisierung mittels Mikroarray-Analyse in den EBM und die GOÄ. medgen 22:20–25

    Article  Google Scholar 

  17. Sharp AJ, Mefford HC, Li K et al (2008) A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 40:322–328

    Article  PubMed  CAS  Google Scholar 

  18. Shaw-Smith C, Pittman AM, Willatt L et al (2006) Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 38:1032–1037

    Article  PubMed  CAS  Google Scholar 

  19. Solinas-Toldo A, Lampel S, Stilgenbauer S et al (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407

    Article  PubMed  CAS  Google Scholar 

  20. Van Esch H, Bauters M, Ignatius J et al (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet 77:442–453

    Article  Google Scholar 

Download references

Interessenkonflikt

Keine Angabe

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Klopocki MBA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klopocki, E. Molekulare Karyotypisierung. Gynäkologe 44, 285–290 (2011). https://doi.org/10.1007/s00129-010-2726-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-010-2726-y

Schlüsselwörter

Keywords

Navigation