Skip to main content
Log in

Biochemie der Zervixreifung und Muttermundseröffnung

Biochemistry of cervical ripening and dilatation

  • Zum Thema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Die biochemischen Mechanismen der Zervixreifung und ihre Regulationssysteme sind nach wie vor nicht vollständig aufgeklärt. Die sich über Wochen vollziehende Zervixreifungsphase (bis zu einer Muttermundweite von 2–3 cm) ist gekennzeichnet durch einen katabolen Proteoglykan- und Glykosaminoglykanstoffwechsel, insbesondere durch einen drastischen Anstieg des Hyaluronans mit Hydratation des Gewebes und einer signifkanten Verminderung der Kollagenkonzentration innerhalb der extrazellulären Matrix, die v. a. über Fibroblasten von Steroidhormonen, Prostaglandin E2, Zytokinen und das NO-System gesteuert werden. Die Rolle bereits um und in den Gefäßen der Zervix akkumulierter neutrophiler Granulozyten und Makrophagen ist in diesem Zusammenhang noch unklar.

Die Muttermundseröffnung unter der Geburt ähnelt einer entzündlichen Reaktion des Gewebes mit Migration, Infiltration und Degranulation neutrophiler Granulozyten, Freisetzung von Proteasen (v. a. Kollagenasen) und Degradation matrixbildender Proteine (v. a. Kollagen). Dabei kommt der Synthesesteigerung von Zytokinen (v. a. IL-1β, IL-8) und vaskulärer Adhäsionsmoleküle besondere Bedeutung zu.

Mögliche klinische Konsequenzen aus diesen Grundlagenuntersuchungen bestehen in der Entwicklung neuer Konzepte zur Diagnostik und Therapie sowohl der verzögerten als auch der vorzeitigen Muttermundseröffnung bei Frühgeburt.

Abstract

The biochemical mechanisms of cervical ripening and its regulation are yet not fully understood. The cervical ripening phase, which begins 4 weeks prior to the delivery (up to a cervical dilatation of 2–3 cm), is characterized by acatabolic metabolism of proteoglycans and glycosaminoglycans, mainly by a dramatic increase in the hyaluronan concentration associated with increased water uptake and by a significant reduction of collagen concentration within the extracellular matrix. These catabolic transformation processes of the cervix are regulated via cervical fibroblasts by steroid hormones, prostaglandin E2, cytokines and the NO system.

The role of neutrophils and macrophages, which are accumulated in and around cervical vessels at that time, still remains unclear. The cervical dilatation during parturition has been compared to an inflammatory reaction and is characterized by migration, infiltration and degranulation of neutrophils with subsequent release of proteases and collagenases and enzymatic degradation of fundamental matrix proteins, in particular collagen. The increased synthesis of cytokines, in particular IL-1β and IL-8, and the increased expression of vascular endothelial adhesion molecules play a crucial role in these processes.

Recent findings from biochemical research may give new insights in the mechanisms of physiological cervical ripening and “artificial” cervical ripening at induction of labor and may also contribute to the development of more promising approaches in the diagnosis and treatment of prematurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bokström H, Brannström M, Alexandersson M, Norström A (1997) Leukocyte subpopulation in human uterine cervical stroma at early and term pregnancy. Hum Reprod 12: 586–590

    Google Scholar 

  2. Chien EK, Mac Gregor C (2003) Expression and regulation of the rat prostaglandin E2 receptor type 4 (EP4) in pregnant cervical tissue. Am J Obstet Gynecol 189: 1501–1510

    Article  CAS  PubMed  Google Scholar 

  3. Chwalisz K, Garfield R (1998) New molecular changes in the induction of cervical ripening. Nitric oxide as the final metabolic mediator of cervical ripening. Hum Reprod 13: 245–248

    Google Scholar 

  4. Egarter C, Friese K (2000) Immunologische Diagnostik bei vorzeitigen Wehen. Gynäkologe 33: 351–355

  5. Fujimoto T, Savani RC, Wateri M, Day AJ, Strauss JF (2002) Induction of the hyaluronic acid-binding protein, tumor necrosis factor-stimulated gene-6, in cervical smooth muscle cells by tumor necrosis factor-α and prostaglandine E2. Am J Pathol 160: 1495–1502

    CAS  PubMed  Google Scholar 

  6. Hendricks CH, Brenner WE, Kraus G (1970) Normal cervical dilatation pattern in late pregnancy and labor. Am J Obstet Gynecol 106: 1065–1082

    CAS  PubMed  Google Scholar 

  7. Imakada K, Sato T, Hashizuma K, Tanimoto A, Sasaguri Y, Ito A (2002) An antiprogesterone, onapristone, enhances the gene expression of promatrix metalloproteinase 3/prostromelysin-1 in the uterine cervix of pregnant rabbit. Biol Pharm Bull 25: 1223–1227

    Article  PubMed  Google Scholar 

  8. Iwahashi M, Muragaki Y, Ooshima A, Umesaki N (2003) Decreased Type I collagen expression in human uterine cervix during pregnancy. J Clin Endocrinol Metab 88: 2231–2235

    Article  CAS  PubMed  Google Scholar 

  9. Junqueira LC, Zugaib M, Montes GS, Toledo OM, Krisztan RM, Shigihara KM (1980) Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilc polymorphnuclear leukocyets during cervical dilation. Am J Obstet Gynecol 138: 273–281

    Google Scholar 

  10. Ledingham MA, Thomson AJ, Jordon F, Young A, Crawford M, Norman JE (2001) Cell adhesion molecule expression in the cervix and myometrium during pregnancy and parturition. Obstet Gynecol 97: 235–242

    Article  CAS  PubMed  Google Scholar 

  11. Ledingham MA, Thomson AJ, Young A, Macara LM, Greer JA et al. (2000) Changes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol Hum Reprod 6: 1041–1048

    Google Scholar 

  12. Maul H, Shi L, Marx SG, Garfield RE, Saade GR (2002) Local application of platelet-activating factor induces cervical ripening by infiltration of polymorphnuclear leukocytes in rats. Am J Obstet Gynecol 187: 829–833

    Article  CAS  PubMed  Google Scholar 

  13. Maul H, Longo M, Saade GR, Garfield RE (2003) Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr Pharm Res 9: 359–38

    CAS  PubMed  Google Scholar 

  14. Osmers R, Rath W, Adelmann-Grill BC, Kuhn W (1992) Origin of cervical collegenase during parturition. Am J Obstet Gynecol 166: 1455–1460

    CAS  PubMed  Google Scholar 

  15. Rajabi MR, Dean DD, Baydown SN, Woessner JR (1988) Elevated tissue levels of collagenase during dilation of the uterine cervix during human parturition. Am J Obstet Gynecol 159: 971–976

    CAS  PubMed  Google Scholar 

  16. Rath W, Winkler M (2001) Medikamentöse Geburtseinleitung. Uni-Med, Bremen London Boston

  17. Schmitz T, Leroy MJ, Dallot E, Breuviller-Fowake M, Ferre F, Cabrol D (2003) Interleukin-1 beta induces glycosaminoglycan synthesis via the prostaglandin E2 pathway in cultured human cervical fibroblasts. Mol Hum Reprod 9: 1–8

    Google Scholar 

  18. Sennström MB, Brauner A, Byström, Malmström A, Ekman G (2003) Matrix metalloproteinase-8 correlates with the cervical ripening process in humans. Acta Obstet Gynecol Scand 82: 904–911

    Article  PubMed  Google Scholar 

  19. Stygar D, Wang H, Vladic YS, Ekman G, Eriksson H, Sahlin L (2002) Increased level of metalloproteinases 2 and 9 in the ripening process of the human cervix. Biol Reprod 67: 887–894

    Google Scholar 

  20. Stygar D, Wang H, Vladic YS, Ekman G, Eriksson H, Sahlin L (2001) Co-localization of oestrogen receptor beta and leukocyte markers in the human cervix. Mol Hum Reprod 7: 881–886

    Google Scholar 

  21. Sugano T, Narahara H, Nasu K, Arima K, Fujisawa K, Miyakawa I (2001) Effects of platelet-activating factor on cytokine production by human uterine cervical fibroblasts. Mol Hum Reprod 7: 475–481

    Google Scholar 

  22. Sugano T, Nasu K, Narahara H, Kawano Y, Nishida Y, Miyakawa I (2000) Platelet-activating factor induces an imbalance between matrix metalloproteinase-1 and tissue inhibitior of MMP-1 expression in human uterine cervical fibroblasts. Biol Reprod 62: 540–546

    CAS  PubMed  Google Scholar 

  23. Tekesin J, Meyer-Wittkopf M, Sierra F, Schmidt S (2002) Quantitative ultrasonic tissue characterization of the cervix—a new predictor for prematurity? Z Geburtsh Neonatol 206: 88–93

    Article  CAS  Google Scholar 

  24. Thomson AJ, Telfer JF, Young A, Campbell S, Stewart CJR, Norman JE (1999) Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Human Reprod 14: 229–236

    Article  CAS  Google Scholar 

  25. Tschugguel W, Schneeberger C, Lass H (1999) Human cervical ripening is associated with an increase in cervical inducible nitric oxide synthase expression. Biol Reprod 60: 1367–1372

    CAS  PubMed  Google Scholar 

  26. Väisänen-Tommiska M, Nuutila M, Aittomäki K, Hiilesmaa V, Ylikorkala O (2003) Nitric oxide metabolites in cervical fluid during pregnancy: further evidence for the role of cervical nitric oxide in cervical ripening. Am J Obstet Gynecol 188: 779–785

    Article  PubMed  Google Scholar 

  27. Wang H, Stjernholm Y, Ekman G, Eriksson H, Sahlin L (2001) Different regulation of oestrogen receptors alpha and beta in the human cervix at term pregnancy. Mol Hum Reprod 7: 293–300

    Google Scholar 

  28. Winkler M (2003) Role of cytokines and other inflammatory mediators. BJOG 110 (Suppl 20): 118–123

    Article  CAS  PubMed  Google Scholar 

  29. Winkler M, Kemp B, Classen-Linke I, Fischer DC, Neulen J, Beier HM, Rath W (2002) Estrogen receptor α and progesteron receptor A and B concentration and localization in the lower uterine segment in term parturition. J Soc Gynecol Investig 9: 226–232

    Google Scholar 

  30. Winkler M, Rath W (2001) Zervixreifung und Muttermundseröffnung: ein molekularer Vorgang. Gynäkologe 34: 510–520

  31. Winkler M, Kemp B, Fischer DC, Ruck P, Rath W (2000) Tissue concentrations of endothelial cell adhesion molecules in the lower uterine segment during term parturition. Obstet Gynecol 95: 363–366

    Article  CAS  PubMed  Google Scholar 

  32. Winkler M, Rath W (1999) Changes in the cervical extracellular matrix during pregnancy and parturition. J Perinat Med 27: 45–61

    CAS  PubMed  Google Scholar 

  33. Winkler M, Oberpichler A, Tschesche H, Ruck P, Fischer DC, Rath W (1999) Collagenolysis in the lower uterine segment during parturition at term: Correlation with stage of cervical dilatation and duration of labor. Am J Obstet Gynecol 181: 153–158

    CAS  PubMed  Google Scholar 

  34. Winkler M, Fischer DC, Ruck P, Marx T, Tschesche H, Rath W (1999) Parturition at term: parallel increases of interleukin-8 and proteinase concentration and neutrophil count in the lower uterine segment. Hum Reprod 14: 1096–1100

    Google Scholar 

  35. Winkler M, Ruck P, Horny HP, Kaiserling E, Rath W (1998) Expression of cell adhesion molecules by endothelium in the human lower uterine segment during parturition at term. Am J Obstet Gynecol 178: 557–561

    CAS  PubMed  Google Scholar 

  36. Yellon SM, Mackler AM, Kirby MA (2003) The role of leukocyte traffic and activation in parturition. J Soc Gynecol Investig 10: 323–338

    Google Scholar 

  37. Yoshida M, Sajawa W, Itoh H et al. (2002) Prostaglandin F, cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion form cultured human cervical fibroblast cells. Mol Hum Reprod 8: 681–687

    Google Scholar 

  38. Yoshida M, Sagawa N, Itoh H et al. (2001): Nitric oxide increases matrix metalloproteinase-1 production in human uterine cervical fibroblast cells. Mol Hum Reprod 7: 979–985

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Rath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rath, W., Bartz, C. Biochemie der Zervixreifung und Muttermundseröffnung. Gynäkologe 37, 314–320 (2003). https://doi.org/10.1007/s00129-004-1508-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-004-1508-9

Schlüsselwörter

Keywords

Navigation