Skip to main content
Log in

Molekulare Grundmechanismen in der Onkogenese

  • Zum Thema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Das Spektrum der gynäkologischen Tumoren reicht von funktionellen Veränderungen über tumorartige Proliferate bis hin zu echten Neoplasien und zeichnet sich durch eine hohe klinische Variabilität aus. Eine zuverlässige Einschätzung dieser Läsionen ist für das therapeutische Vorgehen von hoher Bedeutung.

Tumorentstehung wird heute als mehrstufiger Prozess begriffen, der mit der unkontrollierten Proliferation von Zellen beginnt und über klonale Selektion, Immortalisierung und Akkumulation chromosomaler Aberrationen zur Entwicklung eines invasiven und metastasierenden Tumors führt.

In den vergangenen Jahren konnten durch Fortschritte im Bereich der Molekularbiologie detaillierte Einblicke in die molekulare Pathogenese gewonnen werden. Dadurch wurden einige neue diagnose- und therapierelevante Biomarker (z. B. Her2/neu, upa/pai I) identifiziert, die bereits heute eine individualisierte risikoadaptierte Therapie für einzelne Tumorentitäten ermöglichen.

Abstract

Human female genital tumors comprise heterogeneous lesions including benign, precancerous proliferations and malignant tumors with a high clinical variability. An in-depth understanding of the pathogenesis of these lesions is important for accurate diagnosis and management. To date tumors are viewed as a result of a multistep process with various abnormalities that contribute to tumor development.

Tumorigenesis proceeds through a series of molecular alterations involving uncontrolled cell proliferation, clonal expansion, immortalization, and accumulation of chromosomal aberrations. Major advances in molecular biology provide a better understanding of the molecular pathogenesis of malignant tumors.

The identification of new diagnostically and therapeutically relevant biomarkers (e.g., Her2/neu, upa/pai I) already allows individualized management of some tumor entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34: 369–376

    Article  CAS  PubMed  Google Scholar 

  2. Blasco MA (2002) Telomerase beyond telomeres. Nat Rev Cancer 2: 627–633

    Article  PubMed  Google Scholar 

  3. Bodnar AG, Ouellette M, Frolkis M et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352

    CAS  PubMed  Google Scholar 

  4. Boveri T (1914) Zur Frage der Enstehung maligner Tumoren. Fischer, Jena

  5. Fan X, Wang Y, Kratz J et al. (2003) hTERT gene amplification and increased mRNA expression in central nervous saystem embryonal tumors. Am J Pathol 162: 1763–1769

    PubMed  Google Scholar 

  6. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    PubMed  Google Scholar 

  7. Fishel R, Lescoe MK, Rao MR et al. (1993) The human mutator gene homolog MSH 2 and ist association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

    CAS  PubMed  Google Scholar 

  8. Fisk HA, Mattison CP, Winey M (2002) Centrosomes and tumour suppressors. Curr Opin Cell Biol 14: 700–705

    Article  CAS  PubMed  Google Scholar 

  9. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapport JM Albers DM, Dryja TP (1986) A human DANN segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646

    CAS  PubMed  Google Scholar 

  10. Goldberg DM, Diamandis EP (1993) Models of neoplasia and their diagnostic implications: a historical perspective. Clin Chem 39: 2360–2374

    CAS  PubMed  Google Scholar 

  11. Hartwell L, Weinert T, Kadyk L, Garvik B (1994) Cell cycle checkpoints, genomic integrity, and cancer. Cold Spring Harb Symp Quant Biol 59: 259–263

    PubMed  Google Scholar 

  12. Henson JD, Neumann AA, Yeager TR, Reddel R (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21: 598–610

    Article  PubMed  Google Scholar 

  13. Hernadi Z, Szarka K, Sapy T, Krasznai Z, Veress G, Poka R (2003) The prognostic significance of HPV-16 genome status of the lymph nodes, the integration status and p53 genotype in HPV-16 positive cervical cancer: a long term follow up. BJOG 110: 205–209

    Article  CAS  PubMed  Google Scholar 

  14. Hsu SH, Luk GD, Krush AJ, Hamilton SR, Hoover HH Jr (1983) Multiclonal origin of polyps in Gardner syndrome. Science 221: 951–953

    PubMed  Google Scholar 

  15. Jallepalli PV, Lengauer C (2001) Chromsome segregation and cancer:cutting through the mystery. Nat Rev Cancer 1: 109–117

    Article  PubMed  Google Scholar 

  16. Kiyono T, Foster SA, Koop JL, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396: 84–88

    Article  CAS  PubMed  Google Scholar 

  17. Lawley PD (1994) Historical origins of current concepts of carcinogenis. Adv Cancer Res 65: 17–111

    CAS  PubMed  Google Scholar 

  18. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643–649

    CAS  PubMed  Google Scholar 

  19. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348: 919–932

    Article  PubMed  Google Scholar 

  20. Lyon MF (1999) Imprinting and X-chromosome inactivation. Results Probl Cell Differ 25: 73–90

    CAS  PubMed  Google Scholar 

  21. Malkin D, Li FP, Strong LC et al.(1990) Germ line p53 mutations in familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238

    CAS  PubMed  Google Scholar 

  22. Miller EC, Miller JA (1974) The molecular biology of cancer. Academic Press, New York

  23. Nakamura Y (1998) ATM: p53 booster. Nat Med 4: 1231–1232

    Article  PubMed  Google Scholar 

  24. Park TW, Richart RM, Sun XW, Wright TC Jr (1996) Association between human papillomavirus type and clonal status of cervical squamous intraepithelial lesions. J Natl Cancer Inst 88: 355–358

    Google Scholar 

  25. Park TW, Felix JC, Wright TC Jr (1995) X chromosome inactivation and microsatellite instability in early and advanced bilateral ovarian carcinomas. Cancer Res 55: 4793–4796

    CAS  PubMed  Google Scholar 

  26. Potter V (1957) The present status of the deletion hypothesis. Univ Mich Med Bull 23: 400–412

    Google Scholar 

  27. Steen HB (2000) The origin of oncogneic mutations: where is the damage. Carcinogenesis 21: 1773–1776

    Article  CAS  PubMed  Google Scholar 

  28. Temin HM (1965) The mechanism of carcinogenesis by avian sarcoma viruses. 1. Cell multiplication and differentiation. J Natl Cancer Inst 35: 679–693

    PubMed  Google Scholar 

  29. Varmus HE (1984) The molecular genetics of cellular oncogenes. Ann Rev Genet 18: 553–612

    Article  CAS  PubMed  Google Scholar 

  30. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413: 432–435

    Article  CAS  PubMed  Google Scholar 

  31. Vulliamy T, Marrone A, Dokal I, Mason PJ (2002) Association between aplastic anaemia and mutations in telomerase RNA. Lancet 359: 2168–2170

    Article  CAS  PubMed  Google Scholar 

  32. Zhang A, Zheng C, Hou M et al. (2002) Amplification of the telomerase reverse transcriptase (hTERT) gene in cervical carcinomas. Genes Chromosomes Cancer 34: 269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, T.W., Simon, M. Molekulare Grundmechanismen in der Onkogenese. Gynäkologe 37, 196–202 (2004). https://doi.org/10.1007/s00129-004-1494-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-004-1494-y

Schlüsselwörter

Keywords

Navigation