Skip to main content

Biomarker in der Differenzialdiagnostik von HPV-assoziierten Läsionen

Zusammenfassung

Der Nachweis dysplastischer Veränderungen im Bereich der Zervix durch regelmäßige Pap-Untersuchungen ist sehr fehleranfällig. Deshalb wird nach neuen, zuverlässigeren Biomarkern für Krebsvorstufen der Cervix uteri gesucht. Verschiedene zelluläre Proteine sind bisher ohne großen diagnostischen Nutzen als potenzielle Biomarker evaluiert worden. Ein neuer vielversprechender Ansatz scheint der immunchemische Nachweis der Überexpression des Proteins p16INK4a zu sein. Diese Überexpression ist eine direkte Folge der transformierenden Aktivität des E7-Onkoproteins von HR-HPV-Typen in dysplastischen Zellen des Zervixepithels. Der Nachweis von integrierten Papillomvirussequenzen stellt evtl. einen weiteren interessanten Biomarker dar, der es erlaubt, das Progressionsrisiko von Läsionen des Zervixepithels besser abzuschätzen. Ferner können durch den Nachweis von Zellklonen mit integrierten viralen Genomkopien auch Rezidive nach operativer Entfernung der Primärläsion viel früher erkannt werden.

Abstract

Screening programmes using the Pap smear have significantly reduced incidence and mortality of cervical carcinomas. However, the Pap technique is prone to various errors. Therefore, more reliable markers are necessary to improve the sensitivity and specificity of the existing screening tests. Several cellular proteins have been evaluated as candidate markers for cervical carcinomas. So far, a diagnostic improvement of the respective marker could not be shown. A new promising assay seems to be the immunocytochemical detection of p16INK4a, since expression of this cellular protein is directly linked to the expression of HPV oncogenes in dysplastic cells of the cervical epithelium. Based on the p16INK4a detection, more reliable tests for cervical dysplasias can be developed. The detection of integrated papilloma virus might serve as a biomarker to assess potential of progression of dysplastic lesions. Furthermore, the detection of cell clones with integrated viral genomes can be used as specific recurrency markers after operative treatment of the primary lesion.

This is a preview of subscription content, access via your institution.

Abb. 1a,b.
Abb. 2a,b.
Abb. 3.

Literatur

  1. Anttila A, Pukkala E, Soderman B, Kallio M, Nieminen P, Hakama M (1999) Effect of organised screening on cervical cancer incidence and mortality in Finland, 1963–1995: recent increase in cervical cancer incidence. Int J Cancer 83: 59–65

    CAS  Article  PubMed  Google Scholar 

  2. Bibbo M, Klump WJ, DeCecco J, Kovatich AJ (2002) Procedure for immunocytochemical detection of P16INK4A antigen in thin-layer, liquid-based specimens. Acta Cytol 46: 25–29

    Article  PubMed  Google Scholar 

  3. Bollmann R, Bollmann M, Henson DE, Bodo M (2001) DNA cytometry confirms the utility of the Bethesda system for the classification of Papanicolaou smears. Cancer 93: 222–228

    CAS  Article  PubMed  Google Scholar 

  4. Cameron RI, Maxwell P, Jenkins D, McCluggage WG (2002) Immunohistochemical staining with MIB1, bcl2 and p16 assists in the distinction of cervical glandular intraepithelial neoplasia from tubo-endometrial metaplasia, endometriosis and microglandular hyperplasia. Histopathology 41: 313–321

    CAS  Article  PubMed  Google Scholar 

  5. Carmody MW, Jones M, Tarraza H, Vary CP (1996) Use of the polymerase chain reaction to specifically amplify integrated HPV-16 DNA by virtue of its linkage to interspersed repetitive DNA. Mol Cell Probes 10: 107–116

    CAS  Article  PubMed  Google Scholar 

  6. Cullen AP, Reid R, Campion M, Lorincz AT (1991) Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol 65: 606–612

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cuzick J, Meijer CJ, Walboomers JM (1998) Screening for cervical cancer. Lancet 351: 1439–1440

    CAS  Article  PubMed  Google Scholar 

  8. Stoler MH, Schiffman M (2001) Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study. JAMA 285: 1500–1505

    CAS  Article  PubMed  Google Scholar 

  9. de Vet HC, Knipschild PG, Schouten HJ et al. (1992) Sources of interobserver variation in histopathological grading of cervical dysplasia. J Clin Epidemiol 45: 785–790

    Article  Google Scholar 

  10. Dillner J, Lehtinen M, Bjorge T et al. (1997) Prospective seroepidemiologic study of human papillomavirus infection as a risk factor for invasive cervical cancer. J Natl Cancer Inst 89: 1293–1299

    CAS  Article  PubMed  Google Scholar 

  11. Duensing S, Munger K (2001) Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta 1471: M81–M88

    CAS  PubMed  Google Scholar 

  12. Durst M, Croce CM, Gissmann L, Schwarz E, Huebner K (1987) Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci U S A 84: 1070–1074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Jacobs MV, Walboomers JM, Snijders PJ et al. (2000) Distribution of 37 mucosotropic HPV types in women with cytologically normal cervical smears: the age-related patterns for high-risk and low-risk types. Int J Cancer 87: 221–227

    CAS  Article  PubMed  Google Scholar 

  14. Jeon S, Lambert PF (1995) Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A 92: 1654–1658

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Kalantari M, Blennow E, Hagmar B, Johansson B (2001) Physical state of HPV16 and chromosomal mapping of the integrated form in cervical carcinomas. Diagn Mol Pathol 10: 46–54

    CAS  Article  PubMed  Google Scholar 

  16. Keesee SK, Meyer JL, Hutchinson ML et al. (1999) Preclinical feasibility study of NMP179, a nuclear matrix protein marker for cervical dysplasia. Acta Cytol 43: 1015–1022

    CAS  Article  PubMed  Google Scholar 

  17. Khleif SN, DeGregori J, Yee CL, Otterson GA, Kaye FJ, Nevins JR, Howley PM (1996) Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci U S A 93: 4350–4354

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Klaes R, Benner A, Friedrich T et al. (2002) p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol 26: 1389–1399

    Article  PubMed  Google Scholar 

  19. Klaes R, Friedrich T, Spitkovsky D et al. (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92: 276–284

    CAS  Article  PubMed  Google Scholar 

  20. Klaes R, Woerner SM, Ridder R et al. (1999) Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res 59: 6132–6136

    CAS  PubMed  Google Scholar 

  21. Kruse AJ, Baak JP, Helliesen T, Kjellevold KH, Bol MG, Janssen EA (2002) Evaluation of MIB-1-positive cell clusters as a diagnostic marker for cervical intraepithelial neoplasia. Am J Surg Pathol 26: 1501–1507

    Article  PubMed  Google Scholar 

  22. Luft F, Klaes R, Nees M, Durst M, Heilmann V, Melsheimer P, von Knebel Doeberitz M (2001) Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells. Int J Cancer 92: 9–17

    CAS  Article  PubMed  Google Scholar 

  23. Milde-Langosch K, Riethdorf S, Kraus-Poppinghaus A, Riethdorf L, Loning T (2001) Expression of cyclin-dependent kinase inhibitors p16MTS1, p21WAF1, and p27KIP1 in HPV-positive and HPV-negative cervical adenocarcinomas. Virchows Arch 439: 55–61

    CAS  Article  PubMed  Google Scholar 

  24. O'Sullivan JP (1998) Observer variation in gynaecological cytopathology. Cytopathology 9: 6–14

    Article  PubMed  Google Scholar 

  25. O'Sullivan JP, Ismail SM, Barnes WS et al. (1994) Interobserver variation in the diagnosis and grading of dyskaryosis in cervical smears: specialist cytopathologists compared with non-specialists. J Clin Pathol 47: 515–518

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oh ST, Kyo S, Laimins LA (2001) Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 75: 5559–5566

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Pirog EC, Baergen RN, Soslow RA, Tam D, DeMattia AE, Chen YT, Isacson C (2002) Diagnostic Accuracy of cervical low-grade squamous intraepithelial lesions is improved with MIB-1 immunostaining. Am J Surg Pathol 26: 70–75

    Article  PubMed  Google Scholar 

  28. Reuter S, Bartelmann M, Vogt M et al. (1998) APM-1, a novel human gene, identified by aberrant co-transcription with papillomavirus oncogenes in a cervical carcinoma cell line, encodes a BTB/POZ-zinc finger protein with growth inhibitory activity. EMBO J 17: 215–222

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264: 42–55

    CAS  Article  PubMed  Google Scholar 

  30. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T (1998) Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J Pathol 153: 1741–1748

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Saqi A, Pasha TL, McGrath CM, Yu GH, Zhang P, Gupta P (2002) Overexpression of p16INK4A in liquid-based specimens (SurePath™) as marker of cervical dysplasia and neoplasia. Diagn Cytopathol 27: 365–370

    Article  PubMed  Google Scholar 

  32. Segnan N (1994) Cervical cancer screening. Human benefits and human costs in the evaluation of screening programmes. Eur J Cancer 30A: 873–875

    CAS  Article  PubMed  Google Scholar 

  33. Solomon D, Schiffman M, Tarone R (2001) Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: baseline results from a randomized trial. J Natl Cancer Inst 93: 293–299

    CAS  Article  PubMed  Google Scholar 

  34. Tjalma WA, Weyler JJ, Bogers JJ et al. (2001) The importance of biological factors (bcl-2, bax, p53, PCNA, MI, HPV and angiogenesis) in invasive cervical cancer. Eur J Obstet Gynecol Reprod Biol 97: 223–230

    CAS  Article  PubMed  Google Scholar 

  35. Vocaturo A, Marandino E, Celata E, Caffo A, Moauro M, Vocaturo G, Perrone DR (2002) Colourimetric signal amplification of in situ hybridization assay for human papillomavirus DNA detection in cytological samples. J Exp Clin Cancer Res 21: 239–246

    CAS  PubMed  Google Scholar 

  36. von Knebel Doeberitz M, Oltersdorf T, Schwarz E, Gissmann L (1988) Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res 48: 3780–3786

    Google Scholar 

  37. von Knebel Doeberitz M (2002) New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections. Eur J Cancer 38: 2229–2242

    Article  Google Scholar 

  38. Walboomers JM, Jacobs MV, Manos MM et al. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19

    CAS  Article  PubMed  Google Scholar 

  39. Wentzensen N, Ridder R, Klaes R, Vinokurova S, Schaefer U, von Knebel Doeberitz M (2002) Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions. Oncogene 21: 419–426

    CAS  Article  PubMed  Google Scholar 

  40. Williams GH, Romanowski P, Morris L et al. (1998) Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. Proc Natl Acad Sci U S A 95: 14932–14937

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wollscheid V, Kuhne-Heid R, Stein I, Jansen L, Kollner S, Schneider A, Durst M (2002) Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-grade cervical intraepithelial neoplasia and cervical carcinomas. Int J Cancer 99: 771–775

    CAS  Article  PubMed  Google Scholar 

  42. Zuna RE (1984) The Pap smear revisited. Controversies and recent developments. Postgrad Med 76: 36–46

    CAS  PubMed  Google Scholar 

  43. zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 92: 690–698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. von Knebel Doeberitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ridder, R., Wentzensen, N. & von Knebel Doeberitz, M. Biomarker in der Differenzialdiagnostik von HPV-assoziierten Läsionen. Gynäkologe 36, 323–330 (2003). https://doi.org/10.1007/s00129-003-1342-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-003-1342-5

Schlüsselwörter

  • Zervixkarzinom
  • Papillomviren
  • Screening
  • HPV-Integration

Keywords

  • Cervical carcinoma
  • Papilloma viruses
  • Screening
  • HPV integration