Skip to main content
Log in

Use of new Indices for the Assessment of Air Quality in the Safi Region (Morocco) using Lichen Biomonitoring of Air Contamination by Trace Elements

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study aims to use environmental indices as complementary tools to other air quality biomonitoring techniques. The concentrations of trace elements Hg, Se, V, Mo, and Ba were analyzed by ICP-MS in four lichens: Xanthoria calcicola, Xanthoria parietina, Ramalina pollinaria, and Ramalina lacera. To assess the contamination of lichens by trace elements, different environmental indices were calculated: Contamination Index (Ic), Contamination Factor (CF), Pollution Load Index (PLI) and Enrichment Factor (EF). The results revealed that the genus Ramalina has a low tolerance to polymetallic pollution with a PLI not exceeding 0.44. The genus Xanthoria seems more resistant to polymetallic pollution with a maximum PLI of 2.58. The calculation of the enrichment factor revealed a very strong enrichment of the lichens in Mo, Hg and Se with a maximum content in Ba which reflects a strong metallic contamination of various origins especially in the urban and industrial areas of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboal JR, Fernández JA, Boquete T, Carballeira A (2010) Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci Total Environ 408:6291–6297

    Article  CAS  Google Scholar 

  • Achotegui-Castells A, Sardans J, Ribas A et al (2013) Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ Monit Assess 185:615–629. https://doi.org/10.1007/s10661-012-2579-z

    Article  CAS  Google Scholar 

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017. https://doi.org/10.1016/j.envint.2004.04.004

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Viana M et al (2008) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment. 43(9), pp. 1650–1659, 2009. DOI: https://doi.org/10.1016/j.atmosenv.2008.12.009

  • Arienzo M, Legrand M, Preunkert S et al (2020) Alpine ice-core evidence of a large increase of vanadium and molybdenum pollution in Western Europe during the 20th century. J Geophys Research-Atmospheres. https://doi.org/10.1029/2020JD033211

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2007) Toxicological Profile for Barium and Barium Compounds. U.S. Department of Health and Human Services: Available at: http://www.atsdr.cdc.gov/toxprofiles/tp24.html

  • Bagnato E, Sproveri M et al (2013) The sea–air exchange of mercury (hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion flux ; Chemosphere, Volume 93, Issue 9, novembre 2013, Pages 2024–2032

  • Battelle Memorial Institute (1999) Background report on fertilizer use, contaminants and regulations. Technical report n° 747-R-98-003, U. S. Environmental Protection Agency: Washington (USA), pp. 131

  • Belamie R, Phelippo T (1982) Etude du niveau de contamination des sédiments de plusieurs cours d’eau du bassin Parisien (France) par les métaux et les composés organochlarés CEMAGREF, division qualité des eaux, pêche et pisciculture; rap. n016, 8p

  • Bergamaschi L, Rizzio E, Giaveri G et al (2004) Determination of baseline element composition of lichens using samples from high elevations. Chemosphere 55:933–939

    Article  CAS  Google Scholar 

  • Boonpeng C, Sangiamdee D, Noikrad S, Boonpragob K (2023) Lichen biomonitoring of seasonal outdoor air quality at schools in an industrial city in Thailand. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-023-26685-z

    Article  Google Scholar 

  • Boust D, Jouanneau JM, Latouche C (1981) Méthodologie d’interprétation des teneurs totales en métaux traces contenus dans les sédiments estuariens et littoraux. Bull Inst géol Bassin d’Aquitaine n° 30:72–78

    Google Scholar 

  • Branquinho C, Matos P, Pinho P (2015) Lichens as ecological indicators to track atmospheric changes: future challenges. Indicators and surrogates of biodiversity and environmental change. CSIRO Publishing, Melbourne, pp 77–87

    Google Scholar 

  • Carignan J, Simonetti A, Garie C (2002) Dispersal of atmospheric lead in northeastern North America as recorded by epiphytic lichens. Atmos Environ 36:3759–3766

    Article  CAS  Google Scholar 

  • CCME (2013) Canadian soil quality guidelines for barium: Protection of human health. Scientific criteria document PN 1493 ISBN 978-1-896997- 97 – 1 PDF. Available at: www.ccme.ca/files/Resources/supporting_scientific_documents/pn_1493_basqg_scd_prob_1.0.pdf

  • Chakravarty IM, Patgiri AD (2009) Metal Pollution Assessment in sediments of the Dikrong River, N.E. India. J Hum Ecol 27(1):63–66

    Article  Google Scholar 

  • Chan LS, Ng SL, Davis AM, Yim W, Yeung CH (2001) Magnetic properties and heavy-metal contents of contaminated seabed sediments of penny’s Bay, Hong Kong. Mar Pollut Bull 42:569–583. https://doi.org/10.1016/S0025-326X(00)00203-4

    Article  CAS  Google Scholar 

  • Clair SB, Clair L, Mangelson NF, Weber DJ, Eggett DL (2002) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421

    Article  Google Scholar 

  • Cloquet C, Carignan J, Libourel G (2006) Atmospheric pollutant dispersal around an urban area using trace metal concentrations and pb isotopic compositions in epiphytic lichens. Atmos Environ 40:574–587. https://doi.org/10.1016/j.atmosenv.2005.09.073

    Article  CAS  Google Scholar 

  • ECCC (2016) Science approach document biomonitoring-based approach 2 for barium-containing substances molybdenum-containing substances silver-containing substances thallium-containing substances inorganic tin-containing substances. Environment and Climate Change Canada. Available at: www.ec.gc.ca/eseees/default.asp?lang=En&n=D335D89F-1#toc03

  • El Ouardi M, Mrani M, Anoua H et al (2009) Optimisation du traitement thermique d’un phosphate application au phosphate du bassin gantour au Maroc. Mater Tech 97(2):133–142

    Article  Google Scholar 

  • Esshaimi M, Ouazzani N, Avila M, Perez G et al (2012) Heavy Metal Contamination of Soils and Water Resources Kettara Abandoned Mine. Am J Environ Sci 8:253–261

    Article  Google Scholar 

  • Essilmi M, Loudiki M, El Gharmali A (2019) Study of the lichens of the moroccan atlantic coast Safi-Essaouira: Bioindication of air quality and limiting factors. 17. Applied Ecology and Environmental Researchhttps://doi.org/10.15666/aeer/1702_43054323

  • Essilmi M, Loudiki M, El Gharmali A (2022) Bioaccumulation and sources identification of atmospheric metal trace elements using lichens along a rural–urban pollution gradient in the Safi-Essaouira coastal area. Chem Ecol 1–16. https://doi.org/10.1080/02757540.2022.2142215

  • Gietl JK, Lawrence R, Thorpe A, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment, 44(2010), 141–146

  • Goddard S, Williams K, Robins C, Brown R (2019) Determination of antimony and barium in UK air quality samples as indicators of non-exhaust traffic emissions. Environ Monit Assess 191:641. https://doi.org/10.1007/s10661-019-7774-8

    Article  CAS  Google Scholar 

  • Haida A, Nakara B (2006) Environnement: le phosphogypse dans l’industrie phosphatière. Groupe office chérifien des phosphates, Casablanca Maroc. Covaphos II, volume 4. pp.162

  • ISO/IEC 17025 (2005) : On line: https://www.iso.org/fr/standard/39883.html. (Acceced on 15 April 2020)

  • Kalinowska R, Bačkor M, Pawlik-Skowrońska B (2015) Parietin in the tolerant lichen Xanthoria parietina (L.) Th. Fr. Increases protection of Trebouxia photobionts from cadmium excess. Ecol Ind 58. https://doi.org/10.1016/j.ecolind.2015.05.055

  • Lin L, Lee ML, Eatough DJ (2010) Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment. J Air Waste Manag Assoc 60:3e25

    Article  Google Scholar 

  • Lütke SF, Oliveira M, Silva L et al (2020) Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 256:127138. https://doi.org/10.1016/j.chemosphere.2020.127138

    Article  CAS  Google Scholar 

  • Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification /apportionment of fine and coarse air particles in Thessaloniki. Greece Atmos Environ 36:949e961

    Google Scholar 

  • McLennan S (2001) Relationships between the trace element composition of sedimentary rocks and upper continental cmst, Geochem. Geophys. Geosyst., vol. 2, Paper number 2000GC000109 [8994 words, 10 figures, 5 tables]. Published April 20. 2001

  • Mil-Homens M, Stevens R, Abrantes F, Cato I (2006) Heavy metal assessment for surface sediments from three areas of the portuguese continental shelf. Cont Shelf Res 26:1184–1205

    Article  Google Scholar 

  • Monna F, Poujol M, Annegarn H, Losno R, Coetze H, Dominik J (2006) Origin of atmospheric lead in Johannesburg, South Africa. Atmos Environ 40:6554–6566

    Article  CAS  Google Scholar 

  • Monna F, Bouchaou l, Rambeau C, Remi L, Bruguier O, Dongarrà G, Black S, Chateau C (2011) Lichens used as monitors of atmospheric pollution around Agadir (Southwestern Morocco) ? A case study predating lead-free gasoline, Water Air and Soil Pollution, 223, 1263-1274.10.1007/s11270-011-0942-2

  • Moutaouakil A, Pineau J, Lahlou K (2003) La recherche d’un procédé viable de valorisation d’un phosphogypse provenant de l’industrie phosphatière Marocaine. Déchets Sci techniques 29:30–35

    Google Scholar 

  • Pacyna J, Pacyna E (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Reviews 9:269–298

    Article  CAS  Google Scholar 

  • Rahmanian M, Safari Y (2020) Contamination factor and pollution load index to estimate source apportionment of selected heavy metals in soils around a cement factory, SW Iran, Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2020.1861252

  • Rasmussen et al (2016) Preliminary exposure data for five metals from 2014–2017 CMP(3) research. February 15, 2016. Exposure and Biomonitoring Division, Health Canada, Ottawa, Ontario. Personal communication. unpublished data [as cited in ECCC, 2016]

    Google Scholar 

  • Renteria-Villalobos M, Vioque I, Manteroa J, Manjoa G (2010) Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. J Hazard Mater 181:193–203

    Article  CAS  Google Scholar 

  • Rosso A, Lafont M, Exinger A (1993) Effets des métaux lourds sur les peupelement d’Oligochètes de l’ILL et de ses affluants (haut Rhin, France). Annls Limnol 29(3–4):295–305

    Article  Google Scholar 

  • Rutherford P, Dudas M, Arocena J (1996) Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci Total Environ 180(3):201–209

    Article  CAS  Google Scholar 

  • Salo H, Bucko MS, Vaahtovuo E, Limo J, Mäkinen J, Pesonen LJ (2012) Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem Explor 115:69–81

    Article  CAS  Google Scholar 

  • Snoussi M (1984) Comportement du Pb, Zn, Ni et Cu dans les sédiments de l’estuaire du Loukous et du proche plateau continental (Côte Atlantique Marocaine). Bull. Inst. Géol. Bassin d’Aquitaine, Bardeaux, n030, 71–86

  • Swissaid (2019) Engrais dangereux. On line https://voir-et-agir.ch/content/uploads/2018/12/resumee_maroc.pdf. (Acceced on 21 April 2021)

  • Tessier A, Campbell P, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry;; 51: 844–851

  • Ugarte A, Jhojan P (2021) Chemical characteristics and identification of PM10 sources in two districts of Lima, Peru. Dyna (Medellin, Colombia). 87. https://doi.org/10.15446/dyna.v87n215.83688

  • Usero J et al (2000) Andalicia Board, Environmental Counseling. 1st Edn.,Seville, Editorial, pp: 164

  • Vannini A, Paoli L, Ceccarelli S et al (2018) Physiological and ultrastructural effects of acute ozone fumigation in the lichen Xanthoria parietina: the role of parietin and hydration state. Environ Sci Pollut Res 25:8104–8112. https://doi.org/10.1007/s11356-017-9545-9

    Article  CAS  Google Scholar 

  • Varrica D, Lo Medico F, Alaimo M (2022) Air Quality Assessment by the determination of Trace Elements in Lichens (Xanthoria calcicola) in an Industrial Area (Sicily, Italy). Int J Environ Res Public Health 19:9746. https://doi.org/10.3390/ijerph19159746

    Article  CAS  Google Scholar 

  • Who (world health organization) (2021) New WHO Global Air Quality Guidelines. Available at: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution

  • Who (world health organization) (1990) Environmental Health Criteria 107: Barium. International Programme on Chemical Safety, Geneva, p 121

    Google Scholar 

  • Wong M, Rathod S, Marino R et al (2021) Anthropogenic perturbations to the Atmospheric Molybdenum cycle. Glob Biogeochem Cycles 35. https://doi.org/10.1029/2020GB006787

Download references

Acknowledgements

We warmly thank the members of the French association of lichenology (AFL) for their contribution to the identification of certain species during the determination session at the laboratory of the forest ecology station of Fontainebleau (France, 2016). We also thank Claude Roux for the contribution to the determination of corticolous species (December 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essilmi Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, E., Mohammed, L. & Abdelhay, E.G. Use of new Indices for the Assessment of Air Quality in the Safi Region (Morocco) using Lichen Biomonitoring of Air Contamination by Trace Elements. Bull Environ Contam Toxicol 111, 24 (2023). https://doi.org/10.1007/s00128-023-03783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-023-03783-9

Keywords

Navigation