Skip to main content
Log in

Triazophos-induced Respiratory and Behavioral Effects and Development of Adverse Outcome Pathway (AOP) for short-term Exposed Freshwater Snail, Bellamya Bengalensis

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeogun A, Chukwuka A (2011) Effect of textile factory effluent on otolith and somatic growth parameters in Clarias gariepinus. Zoologist 9:70–77

    Google Scholar 

  • Adeogun AO, Chukwuka AV (2012) Toxicity of industrial wastewater acting singly or in joint-ratios on clarias gariepinus. Am J Environ Sci 8(4):366–375

    Article  CAS  Google Scholar 

  • Adeogun A, Babatunde T, Chukwuka A (2013) Evaluation of response patterns in somatic and otolith features of laboratory-reared and wild Clarias exposed to industrial effluent. Res J Appl Sci Eng Technol 5:626–634

    Article  CAS  Google Scholar 

  • Adeogun AO, Ibor OR, Omogbemi ED, Chukwuka AV, Adegbola RA, Adewuyi GA, Arukwe A (2015) Environmental occurrence and biota concentration of phthalate esters in Epe and Lagos Lagoons, Nigeria. Mar Environ Res 108:24–32

    Article  CAS  Google Scholar 

  • Ahirrao DV, Phand DL (2017) Impact of fenvalerate on whole body of freshwater snail, Bellamya Bengalensis. IJAR 3(1):334–336

    Google Scholar 

  • Alexander Jr JE, Wagoner KC (2016) Respiratory response to temperature variability in the river snail Lithasia obovata and its relevance to the potential impacts of climate change on freshwater gastropods. Am Malacological Bull 34(1):1–14. https://doi.org/10.4003/006.034.0104

    Article  Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chemistry: Int J 29(3):730–741

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater. American Public Health Association

  • Atobatele OE, Olutona GO (2015) Distribution of three non-essential trace metals (Cadmium, Mercury and lead) in the organs of fish from Aiba Reservoir, Iwo, Nigeria. Toxicol Rep 2:896–903. https://doi.org/10.1016/j.toxrep.2015.06.003

    Article  CAS  Google Scholar 

  • Banaei M, MIR VA, Rafei G, Majazi AB (2008) Effect of sub-lethal diazinon concentrations on blood plasma biochemistry

  • Becker JM, Ganatra AA, Kandie F, Mühlbauer L, Ahlheim J, Brack W, Torto B, Agola EL, McOdimba F, Hollert H (2020) Pesticide pollution in freshwater paves the way for schistosomiasis transmission. Sci Rep 10(1):1–13

    Google Scholar 

  • Bhardwaj AK, Chandra RK, Tripathi MK (2021) Analysis of suppressive effects of pesticide triazophos on leucocyte immune responses in a teleost, Channa Punctatus. Drug and Chemical Toxicology:1–8

    Google Scholar 

  • Bonnafé E, Sroda S, Budzinski H, Valière A, Pedelluc J, Marty P, Geret F (2015) Responses of cytochrome P450, GST, and MXR in the mollusk Corbicula fluminea to the exposure to hospital wastewater effluents. Environ Sci Pollution Res 22(14):11033–11046

    Article  Google Scholar 

  • Cacciatore LC, Nemirovsky SI, Guerrero NRV, Cochón AC (2015) Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquat Toxicol 167:12–19

    Article  CAS  Google Scholar 

  • Cagauan AG, Galaites MC, Fajardo LJ (2004) Evaluation of botanical piscicides on Nile tilapia Oreochromis niloticus L. and mosquito fish Gambusia affinis Baird and Girard. In: Proceedings on ISTA. p 12–16

  • Carey JL, Dunn C, Gaspari RJ (2013) Central respiratory failure during acute organophosphate poisoning. Respir Physiol Neurobiol 189(2):403–410

    Article  CAS  Google Scholar 

  • Chandra RK, Bhardwaj AK, Tripathi MK (2021) Evaluation of triazophos induced immunotoxicity of spleen and head kidney in fresh water teleost, Channa punctata. Comp Biochem Physiol Part C: Toxicol Pharmacol 245:109029. https://doi.org/10.1016/j.cbpc.2021.109029

    Article  CAS  Google Scholar 

  • Chukwuka AV, Ogbeide O (2021) In: Do Carmo JSA (ed) Riparian-buffer loss and pesticide incidence in Freshwater Matrices of Ikpoba River (Nigeria): policy recommendations for the Protection of Tropical River Basins in. River Basin Management-Sustainability Issues and Planning Strategies. Intechopen

  • Chukwuka A, Ogbeide O, Uhunamure G (2019) Gonad pathology and intersex severity in pelagic (Tilapia zilli) and benthic (Neochanna diversus and Clarias gariepinus) species from a pesticide-impacted agrarian catchment, south-south Nigeria. Chemosphere 225:535–547

    Article  CAS  Google Scholar 

  • Das S, Gupta A (2012) Effects of cadmium chloride on oxygen consumption and gill morphology of indian flying barb, Esomus danricus. J Environ Biol 33(6):1057

    CAS  Google Scholar 

  • Davies MS (1991) Studies on mucus from intertidal gastropods with reference to energy budgets. The University of Manchester (United Kingdom)

  • Davies M, Hawkins J (1998) Mucus from marine molluscs. Adv Mar Biol 34:1–71. https://doi.org/10.1016/S0065-2881(08)60210-2

    Article  Google Scholar 

  • Del Piero S, MASIERO L, and S. CASELLATO (2014) Toxicity and bioaccumulation of fluoride ion on Branchiura sowerbyi, Beddard,(Oligochaeta, Tubificidae). Zoosymposia 9:44–50

    Article  Google Scholar 

  • DeWhatley MC (2018) Impacts of ammonia and temperature on freshwater snail behavior and physiology

  • Dhara K (2014) Hazardous impact of fly ash and some of its ingredients on fish, fish food organisms and aquatic ecosystema. The University of Kalyani

  • Dhara K, Saha NC, Maiti AK (2017a) Studies on acute and chronic toxicity of cadmium to freshwater snail Lymnaea acuminata (Lamarck) with special reference to behavioral and hematological changes. Environ Sci Pollut Res 24(35):27326–27333. https://doi.org/10.1007/s11356-017-0349-8

    Article  CAS  Google Scholar 

  • Dhara K, Saha NC, Maiti AK (2017b) Studies on acute and chronic toxicity of cadmium to freshwater snail Lymnaea acuminata (Lamarck) with special reference to behavioral and hematological changes. Environ Sci Pollution Res 24(35):27326–27333

    Article  CAS  Google Scholar 

  • Dhara K, Saha S, Chukwuka AV, Pal P, Saha NC, Faggio C (2021a) Fluoride sensitivity in freshwater snail, Bellamya bengalensis (Lamarck, 1882): an integrative biomarker response assessment of behavioral indices, oxygen consumption, haemocyte and tissue protein levels under environmentally relevant exposure concentrations. Environ Toxicol Pharmacol 103789. https://doi.org/10.1016/j.etap.2021.103789

  • Dhara K, Saha S, Pal P, Chukwuka AV, Panigrahi AK, Saha NC, Faggio C (2021b) Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comp Biochem Physiol Part C: Toxicol Pharmacol 109195. https://doi.org/10.1016/j.cbpc.2021.109195

  • Dhara K, Saha S, Pal P, Chukwuka AV, Panigrahi AK, Saha NC, Faggio C (2021c) Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comp Biochem Physiol Part C: Toxicol Pharmacol 109195. https://doi.org/10.1016/j.cbpc.2021.109195

  • Dhara K, Shubhajit S, Chukwuka AV, Saha NC (2021d) Behavioural toxicity and respiratory distress in early life and adult stage of walking catfish Clarias batrachus (Linnaeus) under acute fluoride exposures. Toxicol Environ Health Sci 1–14. https://doi.org/10.1007/s13530-021-00115-4

  • Druart C, Millet M, Scheifler R, Delhomme O, Raeppel C, De Vaufleury A (2011) Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard. Sci Total Environ 409(20):4280–4288. https://doi.org/10.1016/j.scitotenv.2011.07.006

    Article  CAS  Google Scholar 

  • El-Gendy K, Gad A, Radwan M (2021) Physiological and behavioral responses of land molluscs as biomarkers for pollution impact assessment: a review. Environ Res 193:110558. https://doi.org/10.1016/j.envres.2020.110558

    Article  CAS  Google Scholar 

  • Ewere EE, Reichelt-Brushett A, Benkendorff K (2021) Impacts of neonicotinoids on Molluscs: what we know and what we need to know. Toxics 9(2):21. https://doi.org/10.3390/toxics9020021

    Article  CAS  Google Scholar 

  • Finney DJ (1971) A statistical treatment of the sigmoid response curve. Probit analysis. Cambridge University Press, London, p 633

  • Garai P, Banerjee P, Sharma P, Chatterjee A, Bhattacharya R, Saha NC (2022) Mechanistic insights to lactic and formic acid toxicity on benthic oligochaete worm Tubifex tubifex.Environmental Science and Pollution Research:1–15

  • Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE (2017) Metals toxic effects in aquatic ecosystems: modulators of water quality.Water quality:60–89

  • Giesy JP, Graney RL (1989) Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators, environmental Bioassay techniques and their application. Springer, pp 21–60

  • Girón-Pérez M, Velázquez-Fernández J, Díaz-Resendiz K, Díaz-Salas F, Canto-Montero C, Medina-Díaz I, Robledo-Marenco M, Rojas-García A, Zaitseva G (2009) Immunologic parameters evaluations in Nile tilapia (Oreochromis niloticus) exposed to sublethal concentrations of diazinon. Fish Shellfish Immunol 27(2):383–385

    Article  Google Scholar 

  • Graney RL, Giesy JP Jr (1988) Alterations in the oxygen consumption, condition index and concentration of free amino acids in Corbicula fluminea,(mollusca: Pelecypoda) exposed to sodium dodecyl sulfate. Environ Toxicol Chemistry: Int J 7(4):301–315. https://doi.org/10.1002/etc.5620070406

    Article  CAS  Google Scholar 

  • Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120:764–777

    Article  CAS  Google Scholar 

  • Guénard G, von der Ohe PC, de Zwart D, Legendre P, Lek S (2011) Using phylogenetic information to predict species tolerances to toxic chemicals. Ecol Appl 21(8):3178–3190. https://doi.org/10.1890/10-2242.1

    Article  Google Scholar 

  • Jerome FC, Hassan AA, Chukwuka AV (2017) Sex-specific affinity for redox‐active metals influences antioxidant responses of Callinectes amnicola (blue crab) populations in littoral and open water habitats of a tropical coastal lagoon.Marine Ecology38(3)

  • Jerome FC, Hassan A, Chukwuka AV (2020) Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). Sci Total Environ 704:135235. https://doi.org/10.1016/j.scitotenv.2019.135235

    Article  CAS  Google Scholar 

  • Kamanyire R, Karalliedde L (2004) Organophosphate toxicity and occupational exposure. Occup Med 54(2):69–75

    Article  CAS  Google Scholar 

  • Kaya H, Çelik E, Yılmaz S, Tulgar A, Akbulut M, Demir N (2015) Hematological, serum biochemical, and immunological responses in common carp (Cyprinus carpio) exposed to phosalone. Comp Clin Pathol 24(3):497–507

    Article  CAS  Google Scholar 

  • Khalil AM (2015) Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos. Ecotoxicol Environ Saf 116:137–142

    Article  CAS  Google Scholar 

  • Khan MZ, Law FC (2005) Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: a review. Proc Pakistan Acad Sci 42(4):315–323

    Google Scholar 

  • Larson SJ, Capel PD, Majewski MS (2019) Pesticides in surface waters: distribution, trends, and governing factors. CRC Press

  • Li H, Zhang Q, Su H, You J, Wang W-X (2020) High tolerance and delayed responses of Daphnia magna to Neonicotinoid Insecticide Imidacloprid: Toxicokinetic and Toxicodynamic modeling. Environ Sci Technol 55(1):458–467. https://doi.org/10.1021/acs.est.0c05664

    Article  CAS  Google Scholar 

  • Londhe S, Kamble N (2013) Histopathology of cerebro neuronal cells in freshwater snail Bellamya bengalensis: impact on respiratory physiology, by acute poisoning of mercuric and zinc chloride. Toxicol Environ Chem 95(2):304–317. https://doi.org/10.1080/02772248.2013.771431

    Article  CAS  Google Scholar 

  • Mahboob S, Al-Ghanim K, Sultana S, Al-Balawi HA, Sultana T, Al-Misned F, Ahmed Z (2015) A study on acute toxicity of triazophos, profenofos, carbofuran and carbaryl pesticides on Cirrhinus mrigala.Pakistan Journal of Zoology47(2)

  • Maltby L (1999) Studying stress: the importance of organism-level responses. Ecol Appl 9(2):431–440

    Article  Google Scholar 

  • Menezes HC, Paulo BP, Paiva MJN, Cardeal ZL (2016) A simple and quick method for the determination of pesticides in environmental water by HF-LPME-GC/MS. Journal of analytical methods in chemistry 2016

  • Mills JD, McCrohan CR, Bailey SE, Wedgwood MA (1990) Effects of metaldehyde and acetaldehyde on feeding responses and neuronal activity in the snail, Lymnaea stagnalis. Pest Sci 28(1):89–99. https://doi.org/10.1002/ps.2780280111

    Article  CAS  Google Scholar 

  • Mukherjee D, Saha S, Chukwuka AV, Ghosh B, Dhara K, Saha NC, Pal P, Faggio C (2022) Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam®. Sci Total Environ 836:155716

    Article  CAS  Google Scholar 

  • Mustafa G, Mahboob S, Al-Ghanim K, Sultana S, Al-Balawi HA, Sultana T, Al-Misned F, Ahmed Z (2014a) Acute toxicity I: effect of profenofos and triazophos (organophosphates) and carbofuran and carbaryl (carbamates) to Labeo rohita. Toxicol Environ Chem 96(3):466–473

    Article  CAS  Google Scholar 

  • Mustafa G, Mahboob S, Al-Ghanim K, Sultana S, Al-Balawi HA, Sultana T, Al-Misned F, and Z. Ahmed (2014b) Acute toxicity I: effect of profenofos and triazophos (organophosphates) and carbofuran and carbaryl (carbamates) to Labeo rohita. Toxicol Environ Chem 96(3):466–473

    Article  CAS  Google Scholar 

  • Nagy K, Duca RC, Lovas S, Creta M, Scheepers PT, Godderis L, Ádám B (2020) Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. Environ Res 181:108926. https://doi.org/10.1016/j.envres.2019.108926

    Article  CAS  Google Scholar 

  • Naveed A, Venkateshwarlu P, Janaiah C (2010) Impact of sublethal concentration of triazophos on regulation of protein metabolism in the fish Channa punctatus (Bloch). Afr J Biotechnol 9(45):7753–7758

    CAS  Google Scholar 

  • Nyman A-M, Schirmer K, Ashauer R (2014) Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ Sci Technol 48(10):5946–5954. https://doi.org/10.1021/es5005126

    Article  CAS  Google Scholar 

  • Ogbeide O, Chukwuka A, Tongo I, Ezemonye L (2018) Relationship between geosorbent properties and field-based partition coefficients for pesticides in surface water and sediments of selected agrarian catchments: implications for risk assessment. J Environ Manage 217:23–37. https://doi.org/10.1016/j.jenvman.2018.03.065

    Article  CAS  Google Scholar 

  • Ogbeide O, Uhunamure G, Uwagboe L, Osakpamwan T, Glory M, Chukwuka A (2019) Comparative gill and liver pathology of Tilapia zilli, Clarias gariepinus and Neochanna diversus in owan river (Nigeria): relative ecological risks of species in a pesticide-impacted river. Chemosphere 234:1–13

    Article  CAS  Google Scholar 

  • Padmaja Rambabu J, Balaparameswara Rao M (1994) Effect of an organochlorine and three organophosphate pesticides on glucose, glycogen, lipid, and protein contents in tissues of the freshwater snail Bellamya dissimilis (Müller). Bull Environ Contam Toxicol 53(1):142–148. https://doi.org/10.1007/BF00205151

    Article  Google Scholar 

  • Pal S, Maity S, Balachandran S, Chaudhury S (2021) In-vitro Effects of Chlorpyrifos and Monocrotophos on the activity of acetylcholinesterase (AChE) in different tissues of Apple Snail Pila globosa (Swainson, 1822). Nat Envir Pollut Technol 20(3):1263–1268

    CAS  Google Scholar 

  • Pandey S, Kumar R, Sharma S, Nagpure N, Srivastava SK, Verma M (2005) Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicol Environ Saf 61(1):114–120. https://doi.org/10.1016/j.ecoenv.2004.08.004

    Article  CAS  Google Scholar 

  • Piyatiratitivorakul P, Boonchamoi P (2008) Comparative toxicity of mercury and cadmium to the juvenile freshwater snail, Filopaludina martensi martensi. Sci Asia 34:367–370. https://doi.org/10.2306/scienceasia1513-1874.2008.34.367

    Article  CAS  Google Scholar 

  • Psillakis E, Kalogerakis N (2003) Hollow-fibre liquid-phase microextraction of phthalate esters from water. J Chromatogr A 999(1–2):145–153

    Article  CAS  Google Scholar 

  • Reish DL, Oshida PS (1987) Manual of methods in aquatic environment research. Food & Agriculture Org

  • Riedel B, Pados T, Pretterebner K, Schiemer L, Steckbauer A, Haselmair A, Zuschin M, Stachowitsch M (2014) Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level. Biogeosciences 11(6):1491–1518. https://doi.org/10.5194/bg-11-1491-2014

    Article  Google Scholar 

  • Rivadeneira PR, Agrelo M, Kristoff G (2015) Acute exposure of the freshwater snail planorbarius corneus to an environmental concentration of chlorpyrifos: recovery studies of enzyme activities in gonads and effects on reproduction. TOXICOLOGICAL PROPERTIES. USES AND EFFECTS ON HUMAN HEALTH:27

  • Saha S, Chukwuka AV, Mukherjee D, Dhara K, Pal P, Saha NC (2022) Physiological (haematological, growth and endocrine) and biochemical biomarker responses in air-breathing catfish, Clarias batrachus under long-term Captan® pesticide exposures.Environmental Toxicology and Pharmacology:103815

  • Schüder I, Port G, Bennison J (2004) The behavioural response of slugs and snails to novel molluscicides, irritants and repellents. Pest Manage Science: Former Pesticide Sci 60(12):1171–1177. https://doi.org/10.1002/ps.942

    Article  CAS  Google Scholar 

  • Shaker N, Badawy M, Hussein A, and Pathology (2015) Snail control with different and unspecific pesticides. J Plant Prot 6(12):1653–1661. https://doi.org/10.21608/JPPP.2015.75783

    Article  Google Scholar 

  • Shaonan L (1998) Acute toxicity of isofenphos-methyl and triazophos to 3 kinds or fresh water fish. ENVIRONMENTAL POLLUTION and CONTROL 3

  • Singh S, Tiwari R, Ghosh S, Pandey R (2017) Impact of triazophos on Channa punctatus: hematological and histopathological studies. Int J Curr Res 9(3):48246–48252

    CAS  Google Scholar 

  • Singh S, Tiwari RK, Pandey RS (2018) Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicol Rep 5:85–89

    Article  CAS  Google Scholar 

  • Singh S, Tiwari RK, Pandey RS (2019) Acute toxicity evaluation of triazophos, deltamethrin and their combination on earthworm, Eudrilus eugeniae and its impact on AChE activity. Chem Ecol 35(6):563–575

    Article  CAS  Google Scholar 

  • Stachowitsch M, Riedel B, Zuschin M, Machan R (2007) Oxygen depletion and benthic mortalities: the first in situ experimental approach to documenting an elusive phenomenon. Limnol Oceanography: Methods 5(10):344–352. https://doi.org/10.4319/lom.2007.5.344

    Article  Google Scholar 

  • Subaraja M, Vanisree AJ (2015) Cerebral ganglionic variations and movement behaviors of Lumbricus terrestris on exposure to neurotoxin. Annals of neurosciences 22(4):199. https://doi.org/10.5214/ans.0972.7531.220403

    Article  Google Scholar 

  • Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B (2001) Control of octopus arm extension by a peripheral motor program. Science 293(5536):1845–1848

    Article  CAS  Google Scholar 

  • Sumbre G, Fiorito G, Flash T, Hochner B (2005) Motor control of flexible octopus arms. Nature 433(7026):595–596. https://doi.org/10.1038/433595a

    Article  CAS  Google Scholar 

  • Triebskorn R, Henderson I, Martin A, Köhler H-R (1996)Slugs as target or non-target organisms for environmental chemicals

  • United States. Environmental Protection Agency. Assessment, & Watershed Protection Division (1999) Protocol for developing nutrient TMDLs. The Agency

  • Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, & Whelan M (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicological Sciences 142(2):312–320

  • Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences: killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which may produce population changes in the fish and their major prey, the grass shrimp. Bioscience 51(3):209–217

    Article  Google Scholar 

  • Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, Shah I, Wambaugh JF and R. S. J. J. o. c. Judson. 2017. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. 9(1):1–27

  • Yasmeen S, Begum SM (2015) Effect of mercury on behaviour of the freshwater bivalves L. Marginalis in different time hours. Int Sci J 2(1):27–32

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Barasat Government College Department of Zoology for providing laboratory space and facilities for this research.

Funding

PB is supported with a DST-SERB NPDF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azubuike V. Chukwuka.

Ethics declarations

Conflict of Interest

There are no competing interests among the authors.

Ethical Approval

We verify that the study complies with all of the required norms for research ethics, along with the absence of any instances of duplicate publication or plagiarism.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Banerjee, P., Saha, N.C. et al. Triazophos-induced Respiratory and Behavioral Effects and Development of Adverse Outcome Pathway (AOP) for short-term Exposed Freshwater Snail, Bellamya Bengalensis. Bull Environ Contam Toxicol 110, 94 (2023). https://doi.org/10.1007/s00128-023-03734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-023-03734-4

Keywords

Navigation