Skip to main content
Log in

Particle Size Effect of Micro and Nano Aluminium Oxides on Antioxidant Defence System of Model Organism Galleria mellonella

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Studies on heavy metal toxicity show that toxicity of nanoparticles compared to micro form have hypothesis regarding nanoparticles are more efficient on the oxidative stress. The aim of the study was to compare the toxic effects of nano and micro particles of Al2O3 and tissue differences on oxidative stress using model organism Galleria mellonella larvae. The study presented that Al2O3 NPs increased the antioxidant enzyme activities in the fat body of larvae, whereas Al2O3 MPs increased the enzyme activities in the midgut of larvae. In conclusion, heavy metal toxicity depends on the particle size, as well as tissue differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Article  CAS  Google Scholar 

  • Alshaimaa AIA, Hossam EL-din, Amera MO, Mona MM (2022) Assessment of the toxicity of aluminum oxide and its nanoparticles in the bone marrow and liver of male mice: ameliorative efficacy of curcumin nanoparticles. ACS Omega 7(16):13841–13852

    Article  Google Scholar 

  • Armstead AL, Thiago A, Simoes XW, Rik B, Andy B, Bing-Hua J, Yon R, Bingyun L (2017) Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles. J Mater Chem B 5:5648–5657

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bronskill JF (1961) A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J Lep Soc 15:102–104

  • Da Silva M, Benjdir V, Montagne M, Pairon P, Lanone JC, Andujar S (2022) Pulmonary toxicity of silica linked to its Micro- or nanometric particle size and crystal structure: a review. Nanomaterials 12:2392

    Article  Google Scholar 

  • Deng Z, Coudray C, Gouzoux L, Mazur A, Royssiguier Y, Pepin D (2000) Effect of acute and chronic coingestion of AlCl3 with citrate or polyphenolic acids on tissue retention and distribution of aluminum in rats. Biol Trace Elem Res 76(3):245–256

    Article  CAS  Google Scholar 

  • Devashri S, Kannan GM, Tailang M, Vijayaraghavan R (2016) In Vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. J Nanosci 2016:1–9

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Exley C, Clarkson E (2020) Aluminium in human brain tissue from donors without neurodegenerative disease: a comparison with Alzheimer’s disease, multiple sclerosis and autism. Sci Rep 10:7770

    Article  CAS  Google Scholar 

  • Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s Disease, with emphasis on drinking Water. Brain Res Bull 55(2):187–196

    Article  CAS  Google Scholar 

  • Ganguly R, Singh AK, Kumar R, Gupta A, Pandey AK (2019) Nanoparticles as modulators of oxidative stress. In: Maurya PK, Singh S (eds) Nanotechnology in modern animal biotechnology. Elsevier, pp 29–35

    Chapter  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1

    Article  Google Scholar 

  • Greenwald RA (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Handy RD, Kammer FV, Lead JR, Hassellov M, Owen R, Crane M (2008a) The ecotoxicology and chemistry of the manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008b) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A: Environ Sci Eng 41:2699–2711

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2015) Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae. Adv Nano Res 3(4):243–255

  • Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209

    Article  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71(4):952–958

    Article  CAS  Google Scholar 

  • Mahato R (2017) Micro and nano technologies, emerging nanotechnologies for diagnostics, drug delivery and medical devices multifunctional micro- and nanoparticles. Elsevier, pp 21–43

    Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    Article  CAS  Google Scholar 

  • Modena MM, Rühle B, Burg TP, Wuttke S (2019) Nanoparticle characterization: what to measure? Adv Mater 31:1901556

    Article  Google Scholar 

  • Mukherjee D, Rai A, Zachariah MR (2006) Quantitative laserinduced breakdown spec-troscopy for aerosols via internal calibration: application to the oxidative coatings of aluminum nanoparticles. Aerosol Sci 37:677–695

    Article  CAS  Google Scholar 

  • Muramoto S (1983) Elimination of copper from Cu-contaminated fish by long-term exposure to EDTA and fresh-water. J Environ Sci Health A 18(3):455–461

    Google Scholar 

  • Ravishankar RV, Jamuna BA (2011) Nanoparticles and their potential application as anti-microbials. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 197–209

    Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanoparticle Res 13:3287–3299

    Article  CAS  Google Scholar 

  • Sezer Tuncsoy B, Tuncsoy M, Gomes T, Sousa V, Teixeira MR, Bebianno MJ, Ozalp P (2019) Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L. B Environ Contam Tox 102(3):341–346

    Article  CAS  Google Scholar 

  • Singh M, Verma Y, Rana SVS (2021) Hepatotoxicity induced by nickel nano and microparticles in male rat: a comparative study. Toxicol Environ Health Sci 13:251–260

    Article  Google Scholar 

  • Soltaninejad H, Zare-Zardini H, Hamidieh AA, Sobhan MR, Saeed-Banadaky SH, Amirkhani MA, Tolueinia B, Mehregan M, Mirakhor M, Eshaghi FS (2020) Evaluating the toxicity and histological Effects of Al2O3 nanoparticles on bone tissue in animal model: a case-control study. J Toxicol 22:8870530

    Google Scholar 

  • Tuncsoy B, Mese Y (2021) Influence of titanium dioxide nanoparticles on bioaccumulation, antioxidant defense and immune system of Galleria mellonella L. Environ Sci Pollut Res 28:38007–38015

    Article  CAS  Google Scholar 

  • Vignal C, Desreumaux P, Body-Malapel M (2016) Gut: an underestimated target organ for aluminum. Morphologie 100:75–84

    Article  CAS  Google Scholar 

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236

    Article  CAS  Google Scholar 

  • Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, Momoli F, Krewski D (2014) Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nano-scale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 44(4):1–80

    Article  CAS  Google Scholar 

  • Yasur J, Pathipati UR (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  Google Scholar 

  • Yerli C, Çakmakcı T, Sahin U, Tüfenkçi Ş (2020) The Effects of Heavy Metals on Soil, Plant, Water and Human Health. Turkish J Nat Sci 9:103–114

    Google Scholar 

  • Zorlu T, Nurullahoğlu ZU, Altuntaş H (2018) Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae). J Entomol Res Soc 20(3):89–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tuncsoy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncsoy, B., Tuncsoy, M. Particle Size Effect of Micro and Nano Aluminium Oxides on Antioxidant Defence System of Model Organism Galleria mellonella. Bull Environ Contam Toxicol 110, 75 (2023). https://doi.org/10.1007/s00128-023-03715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-023-03715-7

Keywords

Navigation