Skip to main content
Log in

Exposure to Nickel Oxide Nanoparticles Induces Alterations in Antioxidant System, Metabolic Enzymes and Nutritional Composition in Muscles of Heteropneustes fossilis

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The current study was performed to explore potential toxic effect of nickel oxide nanoparticles (NiO NPs) on muscle tissue of catfish, Heteropneustes fossilis. Fishes were exposed to different concentrations of NiO NPs (12 mg/L, 24 mg/L, 36 mg/L and 48 mg/L) for a period of 14 days. Results revealed that NiO NPs caused significant increase in Ni accumulation, metallothionein content, lipid peroxidation and activity of different antioxidant enzymes (catalase, glutathione s transferase and glutathione reductase) while decrease in activity of superoxide dismutase (p < 0.05). Data also reported induction of Na+/K+ ATPase activity initially and then its decrease in concentration dependent manner. Fourier transform infrared spectroscopy revealed shift and changes in spectra of muscle of NiO NPs treated fishes. Fluctuations in activity of aspartate amino transferase, alanine amino transferase and alkaline phosphatase were also noticed. Nutritional contents like protein, lipid, and moisture significantly reduced while glucose and ash percent increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Khalek AA, Elhaddad E, Mamdouh S et al (2018) The chronic exposure to discharges of Sabal drain induces oxidative stress and histopathological alterations in Oreochromis niloticus. Bull Environ Contam Toxicol 101(1):92–98

    Article  CAS  Google Scholar 

  • Abdel-Khalek AA, Kadry MA, Badran SR et al (2015) Comparative toxicity of copper oxide bulk and nano particles in Nile tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57

    Article  CAS  Google Scholar 

  • Abdel-Tawwab M, Wafeek M (2014) Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein–cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L). J Therm Biol 45:157–162

    Article  CAS  Google Scholar 

  • Abirami T, Jose AGR, Govindarajulu BAVANI et al (2017) Ecotoxicology of green synthesized silver nanoparticles on fresh water fish Mystus gulio. Int J Pharm Pharm Sci 9(11):192–198

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro, In: SP Colowick,  NO Kaplane (Eds). Methods Enzymol 105:121–126

  • Agrahari S, Pandey KC, Gopal K (2007) Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pestic Biochem Phys 88(3):268–272

    Article  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Et al (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Akhbarizadeh R, Russo G, Rossi S et al (2021) Emerging endocrine disruptors in two edible fish from the Persian Gulf: occurrence, congener profile, and human health risk assessment. Mar Pollut Bull 166:112241

    Article  CAS  Google Scholar 

  • Aziz S, Abdullah S, Anwar H et al (2021) Effect of engineered nickel oxide nanoparticles on antioxidant enzymes in freshwater fish, Labeo rohita. Pak Vet J 41(3):424–428

    Article  CAS  Google Scholar 

  • Balami S, Sharma A, Karn R (2019) Significance of nutritional value of fish for human health. Malays J Halal Res 2(2):32–34

    Article  Google Scholar 

  • Bao S, Tang W, Fang T (2020) Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebra fish. Chemosphere 249:126172

    Article  CAS  Google Scholar 

  • Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60:92–94

    Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • Fırat Ö, Bozat RC (2019) Assessment of biochemical and toxic responses induced by titanium dioxide nanoparticles in Nile tilapia Oreochromis niloticus. Hum Ecol Risk Assess: Int J 25(6):1438–1447

    Article  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem 226(1):497–509

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

    Article  CAS  Google Scholar 

  • Kakakhel MA, Wu F, Sajjad W et al (2021) Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environl Sci Eur 33(1):1–11

    Google Scholar 

  • Kind PR, King EG (1954) Colorimetric determination of alkaline phosphatase activity. J Clin Pathol 7:322

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220

    Article  CAS  Google Scholar 

  • Kovrižnych JA, Sotníková R, Zeljenková D et al (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages–comparative study. Interdiscip Toxicol 6(2):67

    Article  Google Scholar 

  • Kumar N, Chandan NK, Wakchaure GC et al (2020) Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp Biochem Phys Part C: Toxicol Pharmacol 229:108678. https://doi.org/10.1016/j.cbpc.2019.108678

    Article  CAS  Google Scholar 

  • Kumar N, Gupta S, Chandan NK et al (2014) Lipotropes protect against pathogen-aggravated stress and mortality in low dose pesticide-exposed fish. PLoS ONE 9(4):e93499. https://doi.org/10.1371/journal.pone.0093499

    Article  CAS  Google Scholar 

  • Kumar N, Krishnani KK, Singh NP (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res 25(9):8914–8927

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Ferry AL et al (1951) Protein measurement with folin-phenol reagent. J Bioll Chem 193:265–275

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  Google Scholar 

  • Mahboob S, Al-Ghanim KA, Al-Mulhim NM (2017) Fish exposure to sub-lethal toxicity of nano-titanium oxide and changes in muscular antioxidant enzymes and protective role of vitamins c and e in Clarias gariepinus. Int J Agric Biol 19:1505–1510. https://doi.org/10.17957/IJAB/15.0454

    Article  CAS  Google Scholar 

  • Mani R, Balasubramanian S, Raghunath A et al (2020) Chronic exposure to copper oxide nanoparticles causes muscle toxicity in adult zebrafish. Environ Sci Pollut Res 27(22):27358–27369

    Article  CAS  Google Scholar 

  • Matouke MM (2019) FTIR study of the binary effect of titanium dioxide nanoparticles (nTiO2) and copper (Cu2+) on the biochemical constituents of liver tissues of catfish (Clarias gariepinus). Toxicol Rep 6:1061–1070

    Article  CAS  Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Can J Fish Aquat Sci 50(3):656–658. https://doi.org/10.1139/f93-075

    Article  CAS  Google Scholar 

  • Mesías M, Holgado F, Sevenich R et al (2015) Fatty acids profile in canned tuna and sardine after retort sterilization and high pressure thermal sterilization treatment. J Food Nutr Res 54:171–178

    Google Scholar 

  • Mohanty BP, Mahanty A, Ganguly S et al (2019) Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem 293:561–570

    Article  CAS  Google Scholar 

  • Monserrat JM, Martínez PE, Geracitano LA et al (2007) Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol Part C: Toxicol Pharmacol 146(1–2):221–234

    Google Scholar 

  • National Food and Nutritional Commission of Zambia (NFNC) (2011) National Food and nutritional strategic plan 2011–2015

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  • Ortiz-Ordoñez E, Uría-Galicia E, Ruiz-Picos RA et al (2011) Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis. Arch Environ Contam Toxicol 61(3):443–452

    Article  Google Scholar 

  • Punitha P, Shoba V, Krishnapriya K et al (2014) Toxicity evaluation of mg doped ZnS nanoparticles and bougainvillae glabra flower extract on fresh water fish Oreochromis mossambicus. Int J Mod Res Rev 2:246–250

    Google Scholar 

  • Rajkumar KS, Kanipandian N, Thirumurugan R (2016) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 6(1):19–29. https://doi.org/10.1007/s13204-015-0417-7

    Article  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63. https://doi.org/10.1093/ajcp/28.1.56

    Article  CAS  Google Scholar 

  • Samim AR, Singh VK, Vaseem H (2022) Assessment of hazardous impact of nickel oxide nanoparticles on biochemical and histological parameters of gills and liver tissues of Heteropneustes fossilis. J Trace Elem Med Biol 74:127059. https://doi.org/10.1016/j.jtemb.2022.127059

    Article  CAS  Google Scholar 

  • Samim AR, Vaseem H (2021) Assessment of the potential threat of nickel (II) oxide nanoparticles to fish Heteropneustes fossilis associated with the changes in haematological, biochemical and enzymological parameters. Environ Sci Pollut Res 28(39):54630–54646

    Article  Google Scholar 

  • Shahzad K, Khan MN, Jabeen F et al (2019) Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. Int J Environ Sci Technol 16(4):1973–1984

    Article  CAS  Google Scholar 

  • Shiosaka T, Okuda H, Fujii S (1971) Mechanism of the phosphorylation of thymidine by the culture filtrate of Clostridium perfringens and rat liver extract. Biochim Biophys Acta (BBA) 246(2):171–183

    Article  CAS  Google Scholar 

  • Thilsted SH, Thorne-Lyman A, Webb P et al (2016) Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61:126–131

    Article  Google Scholar 

  • Trinder P (1969) Enzymatic colorimetric method of glucose. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  • Valerio-García RC, Carbajal-Hernández AL, Martínez-Ruíz EB et al (2017) Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Sci Total Environ 583:308–318

    Article  Google Scholar 

  • Vaseem H (2019) Analysis of heavy metal concentrations and haematological parameters of two fishes, Channa punctatus and Heteropneustes fossilis from a fish market, Aligarh, India. EC Pharmacol Toxicol 7:523–530

    Google Scholar 

  • Vaseem H, Banerjee TK (2016) Evaluation of pollution of Ganga River water using fish as bioindicator. Environ Monit Assess 188(8):1–9

    Article  CAS  Google Scholar 

  • Viarengo A, Ponzano E, Dondero F et al (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44:69–84

    Article  CAS  Google Scholar 

  • Vicari T, Dagostim AC, Klingelfus T et al (2018) Co-exposure to titanium dioxide nanoparticles (NpTiO2) and lead at environmentally relevant concentrations in the neotropical fish species Hoplias intermedius. Toxicol Rep 5:1032–1043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by University Grant Commission (UGC), by the STARTUP Grant Number F.30–409/ 2018(BSR)), UGC, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Both ARS & HV contributed to conceptualization, formal analyses, data curation, methodology, investigation and validation. HV supervised this work and provided necessary resources to ARS to conduct this research. ARS wrote the original manuscript which was further edited by HV. Both authors approved the final manuscript.

Corresponding author

Correspondence to Huma Vaseem.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samim, A.R., Vaseem, H. Exposure to Nickel Oxide Nanoparticles Induces Alterations in Antioxidant System, Metabolic Enzymes and Nutritional Composition in Muscles of Heteropneustes fossilis. Bull Environ Contam Toxicol 110, 79 (2023). https://doi.org/10.1007/s00128-023-03714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-023-03714-8

Keywords

Navigation