Skip to main content
Log in

Remote Sensing and Nonlinear Auto-regressive Neural Network (NARNET) Based Surface Water Chemical Quality Study: A Spatio-Temporal Hybrid Novel Technique (STHNT)

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In recent days, the quality of water in inland water bodies has been threatened by various natural and anthropogenic activities. Henceforth, the continuous monitoring of water quality is mandatory to control the pollution level in surface water bodies. In this work, remote sensing technology integrated with an Artificial Intelligence (AI) algorithm, a new technique called Spatio-Temporal Hybrid Novel Technique (STHNT), was used to predict, and monitor the chemical water quality pollution level through the Water Quality Index (WQI). The Two Bands Regression Empirical (TBRE) water quality model has been used to retrieve water quality parameters from multi-resolution satellite imagery (Sentinel-2 MSI). The Nonlinear Auto-regressive Neural Network (NARNET), which is an Artificial Neural Network (ANN), was set up to predict the water quality index. Based on the model performed on the remote sensing water quality data, it is inferred that NARNET (Coefficient of determination-R2:0.9911, Root Mean Square Error-RMSE:1.693 and Sum of Squares of Error-SSE:14.33) provides significant results in predicting WQI. Therefore, the combined remote sensing technology with artificial intelligence plays a pivotal role in water resource management, which helps in reducing the pollution level in surface water bodies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Acknowledgements

This research is supported by Big Data Analytics/ Hyperspectral Remote Sensing, ICPS Division, Department of Science and Technology, Government of India (Reference Number: BDID/01/23/2014-HSRS/14). We thank the SRM Institute of Science and Technology for providing all facilities to carry out the research and constant Encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ramaraj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 412.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaraj, M., Sivakumar, R. Remote Sensing and Nonlinear Auto-regressive Neural Network (NARNET) Based Surface Water Chemical Quality Study: A Spatio-Temporal Hybrid Novel Technique (STHNT). Bull Environ Contam Toxicol 110, 28 (2023). https://doi.org/10.1007/s00128-022-03646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-022-03646-9

Keywords

Navigation