Skip to main content

Effects of Microplastics on Higher Plants: A Review

Abstract

Microplastics pose great risks to terrestrial systems owing to their large quantity and strong persistence. Higher plants, an irreplaceable part of the terrestrial ecosystem, are inevitably exposed to microplastics. This review highlights the effects of microplastics on higher plant growth and performance. The tested microplastics, plant species, and cultural methods used in existing studies were summarized. We discussed the reasons why these microplastics, plants, and methods were selected. The various responses of higher plants to microplastics in both soils and waters were critically reviewed. We also highlighted the influencing mechanisms of microplastics on higher plants. Conclusively, more than 13 types of common microplastics and more than 30 species of higher plants have been selected and studied by the published literatures. Soil culture tests and hydroponic experiments are almost equally divided. The effects of microplastics on higher plants varied among microplastic properties, plant species, and environmental factors. Microplastics had no or positive effects on higher plants under certain experimental conditions. However, more studies showed that microplastics can inhibit higher plant growth and performance. We reduced the inhibitory mechanisms into direct and indirect mechanisms. The direct mechanisms include blocking pores or light, causing mechanical damage to roots, hindering genes expression, and releasing additives. The indirect mechanisms contain changing soil properties, affecting soil microbes or soil animals, and affecting bioavailability of other pollutants. This review improves the understanding of effects and influencing mechanisms of microplastics on higher plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abbasi S, Moore F, Keshavarzi B et al (2020) PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Sci Total Environ 744:140984

    CAS  Article  Google Scholar 

  • Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23

    CAS  Article  Google Scholar 

  • Bao Y, Pan C, Li D et al (2022) Stress response to oxytetracycline and microplastic-polyethylene in wheat (Triticum aestivum L.) during seed germination and seedling growth stages. Sci Total Environ 806:150553

    CAS  Article  Google Scholar 

  • Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53:11496–11506

    CAS  Article  Google Scholar 

  • Bosker T, Bouwman LJ, Brun NR et al (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    CAS  Article  Google Scholar 

  • Bueks F, Kaupenjohann M (2020) Global concentrations of microplastics in soils—a review. Soil 6:649–662

    Article  Google Scholar 

  • Colzi I, Renna L, Bianchi E et al (2022) Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J Hazard Mater 423:127238

    CAS  Article  Google Scholar 

  • de Souza Machado AA, Lau CW, Till J et al (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52:9656–9665

    Article  CAS  Google Scholar 

  • de Souza Machado AA, Lau CW, Kloas W et al (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052

    Article  CAS  Google Scholar 

  • Dong Y, Gao M, Song Z et al (2020) Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 259:113892

    CAS  Article  Google Scholar 

  • Dong Y, Gao M, Qiu W et al (2021) Uptake of microplastics by carrots in presence of As(III): combined toxic effects. J Hazard Mater 411:125055

    CAS  Article  Google Scholar 

  • Dong Y, Bao Q, Gao M et al (2022) A novel mechanism study of microplastic and As co-contamination on indica rice (Oryza sativa L.). J Hazard Mater 421:126694

    CAS  Article  Google Scholar 

  • Eisenhauer N, Milcu A, Sabais ACW et al (2009) Earthworms enhance plant regrowth in a grassland plant diversity gradient. Eur J Soil Biol 45:455–458

    Article  Google Scholar 

  • Esterhuizen M, Kim YJ (2021) Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment. Environ Sci Pollut Res 21:17033

    Google Scholar 

  • Fajardo C, Martín C, Costa G et al (2022) Assessing the role of polyethylene microplastics as a vector for organic pollutants in soil: ecotoxicological and molecular approaches. Chemosphere 288:132460

    CAS  Article  Google Scholar 

  • Fuller S, Gautam A (2016) A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol 50:5774–5780

    CAS  Article  Google Scholar 

  • Gao M, Liu Y, Song Z (2019) Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere 237:124482

    CAS  Article  Google Scholar 

  • Gao M, Xu Y, Liu Y et al (2021) Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce. Environ Pollut 268:115870

    CAS  Article  Google Scholar 

  • Ge J, Li H, Liu P et al (2021) Review of the toxic effect of microplastics on terrestrial and aquatic plants. Sci Total Environ 791:148333

    CAS  Article  Google Scholar 

  • Gong W, Zhang W, Jiang M et al (2021) Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci Total Environ 796:148750

    CAS  Article  Google Scholar 

  • Guo A, Pan C, Su X et al (2022a) Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles. Environ Pollut 302:119046

    CAS  Article  Google Scholar 

  • Guo M, Zhao F, Tian L et al (2022b) Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants. Sci Total Environ 809:151100

    CAS  Article  Google Scholar 

  • Hahladakis JN, Velis CA, Weber R et al (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    CAS  Article  Google Scholar 

  • Halle AT, Ladirat L, Gendre X et al (2016) Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol 50:5668–5675

    Article  CAS  Google Scholar 

  • Han LF, Chen LY, Li DT et al (2022) Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environ Pollut 292:118386

    CAS  Article  Google Scholar 

  • Hartmann NB, Rist S, Bodin J et al (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess 13:488–493

    Article  Google Scholar 

  • Huang JN, Wen B, Xu L et al (2022) Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis. J Hazard Mater 421:126830

    CAS  Article  Google Scholar 

  • Huerta Lwanga E, Gertsen H, Gooren H et al (2016) Microplastics in the terrestrial ecosystem: Implications for lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50:2685–2691

    CAS  Article  Google Scholar 

  • Jia H, Wu D, Yu Y et al (2022) Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere 288:132576

    CAS  Article  Google Scholar 

  • Jiang X, Chen H, Liao Y et al (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838

    CAS  Article  Google Scholar 

  • Jovanovic B (2017) Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr Environ Assess 13:510–515

    Article  Google Scholar 

  • Kalcíkova G, Gotvajn AZ, Kladnik A et al (2017) Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environ Pollut 230:1108–1115

    Article  CAS  Google Scholar 

  • Kim SW, An YJ (2019) Soil microplastics inhibit the movement of springtail species. Environ Int 126:699–706

    Article  Google Scholar 

  • Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54

    CAS  Article  Google Scholar 

  • Lee TY, Kim L, Kim D et al (2022) Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. J Hazard Mater 429:128306

    CAS  Article  Google Scholar 

  • Li J, Song Y, Cai Y (2020a) Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environ Pollut 257:113570

    CAS  Article  Google Scholar 

  • Li L, Luo Y, Li R et al (2020b) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain 3:929–937

    Article  Google Scholar 

  • Li Z, Li R, Li Q et al (2020c) Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere 255:127041

    CAS  Article  Google Scholar 

  • Li J, Guo K, Cao YS et al (2021a) Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics. Environ Pollut 269:116151

    CAS  Article  Google Scholar 

  • Li S, Wang T, Guo J et al (2021b) Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. J Hazard Mater 415:125614

    CAS  Article  Google Scholar 

  • Li Z, Li Q, Li R et al (2021c) The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ Sci Pollut Res 28:16042–16053

    CAS  Article  Google Scholar 

  • Lian JP, Wu J, Xiong H et al (2020) Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J Hazard Mater 385:121620

    CAS  Article  Google Scholar 

  • Lian JP, Liu WT, Meng LZ et al (2021a) Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J Clean Prod 318:128571

    CAS  Article  Google Scholar 

  • Lian JP, Liu WT, Meng LZ et al (2021b) Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environ Pollut 280:116978

    CAS  Article  Google Scholar 

  • Liao YC, Nazygul J, Li M et al (2019) Effects of microplastics on the growth, physiological and biochemical characteristics of wheat (Triticum aestivum). Environ Sci 40:4661–4667 (in Chinese)

    Google Scholar 

  • Lindeque PK, Cole M, Coppock RL et al (2020) Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ Pollut 265:114721

    CAS  Article  Google Scholar 

  • Lopez MD, Toro MT, Riveros GM et al (2022) Brassica sprouts exposed to microplastics: effects on phytochemical constituents. Sci Total Environ 823:153796

    CAS  Article  Google Scholar 

  • Lozano YM, Rillig MC (2020) Effects of microplastic fibers and drought on plant communities. Environ Sci Technol 54:6166–6173

    CAS  Article  Google Scholar 

  • Lozano YM, Lehnert T, Linck LT et al (2021) Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front Plant Sci 12:616645

    Article  Google Scholar 

  • Luo H, Li Y, Zhao Y et al (2020) Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environ Pollut 257:113475

    CAS  Article  Google Scholar 

  • Lusher AL, Welden NA, Sobral P et al (2017) Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal Methods UK 9:1346–1360

    Article  Google Scholar 

  • Maity S, Chatterjee A, Guchhait R et al (2020) Cytogenotoxic potential of a hazardous material, polystyrene microparticle on Allium cepa L. J Hazard Mater 385:121560

    CAS  Article  Google Scholar 

  • Mateos-Cárdenas A, Scott DT, Seitmaganbetova G et al (2019) Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci Total Environ 689:413–421

    Article  CAS  Google Scholar 

  • Meng F, Yang X, Riksen M et al (2021) Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Sci Total Environ 755:142516

    CAS  Article  Google Scholar 

  • Mudrak O, Frouz J (2018) Earthworms increase plant biomass more in soil with no earthworm legacy than in earthworm-mediated soil, and favour late successional species in competition. Funct Ecol 32:626–635

    Article  Google Scholar 

  • Peng X, Chen M, Chen S et al (2018) Microplastics contaminate the deepest part of the world’s ocean. Geochem Perspect Lett 9:1–5

    Article  Google Scholar 

  • Pflugmacher S, Tallinen S, Kim YJ et al (2021) Ageing affects microplastic toxicity over time: effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum. Sci Total Environ 790:148166

    CAS  Article  Google Scholar 

  • Pignattelli S, Broccoli A, Renzi M (2020) Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci Total Environ 727:138609

    CAS  Article  Google Scholar 

  • Prendergast-Miller MT, Katsiamides A, Abbass M et al (2019) Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris. Environ Pollut 251:453–459

    CAS  Article  Google Scholar 

  • Qi Y, Yang X, Mejia Pelaez A et al (2018) Macro- and micro-plastics in soil–plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    CAS  Article  Google Scholar 

  • Rachman CM (2018) Microplastics research—from sink to source. Science 360:28–29

    Article  Google Scholar 

  • Razanajatovo RM, Ding JN, Zhang SS et al (2018) Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Mar Pollut Bull 136:516–523

    CAS  Article  Google Scholar 

  • Rillig MC, Lehmann A (2020) Microplastic in terrestrial ecosystems. Science 368(6498):1430–1431

    CAS  Article  Google Scholar 

  • Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:1362

    Article  CAS  Google Scholar 

  • Rodriguez-Seijo A, da Costa JP, Rocha-Santos T et al (2018) Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environ Sci Pollut Res Int 25:33599–33610

    CAS  Article  Google Scholar 

  • Rozman U, Turk T, Skalar T et al (2021) An extensive characterization of various environmentally relevant microplastics—material properties, leaching and ecotoxicity testing. Sci Total Environ 773:145576

    CAS  Article  Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856

    Google Scholar 

  • Senavirathna MDHJ, Zhaozhi L, Fujino T (2022) Short-duration exposure of 3-m polystyrene microplastics affected morphology and physiology of watermilfoil (sp. roraima). Environ Sci Pollut Res Int 22:18642

    Google Scholar 

  • Song Y, Cao C, Qiu R et al (2019) Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ Pollut 250:447–455

    CAS  Article  Google Scholar 

  • Sun X, Li Q, Shi Y et al (2019) Characteristics and retention of microplastics in the digestive tracts of fish from the Yellow Sea. Environ Pollut 249:878–885

    CAS  Article  Google Scholar 

  • Sun XD, Yuan XZ, Jia YB et al (2020) Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol 15:755–760

    CAS  Article  Google Scholar 

  • Sun H, Lei C, Xu J et al (2021) Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J Hazard Mater 416:125854

    CAS  Article  Google Scholar 

  • Tao Z, Cao X, Luo X et al (2012) Responses of three enzyme activities to lower molecular weight polyethylene added in pot-cultured horse bean soil. Chin J Soil Sci 43:1104–1110

    CAS  Google Scholar 

  • Taylor SE, Pearce CI, Sanguinet KA et al (2020) Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environ Sci Nano 7:1942–1953

    CAS  Article  Google Scholar 

  • Urbina MA, Correa F, Aburto F et al (2020) Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci Total Environ 741:140216

    CAS  Article  Google Scholar 

  • van Weert S, Redondo-Hasselerharm PE, Diepens NJ et al (2019) Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci Total Environ 654:1040–1047

    Article  CAS  Google Scholar 

  • Wang J, Coffin S, Sun C et al (2019) Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ Pollut 249:776–784

    CAS  Article  Google Scholar 

  • Wang F, Zhang X, Zhang S et al (2020a) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Environ Pollut 254:126791

    CAS  Google Scholar 

  • Wang ZH, Sedighi M, Lea-Langton A (2020b) Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Res 184:116165

    CAS  Article  Google Scholar 

  • Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    CAS  Article  Google Scholar 

  • Wu X, Liu Y, Yin S et al (2020) Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ Pollut 266:115159

    CAS  Article  Google Scholar 

  • Wu J, Liu W, Zeb A et al (2021) Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism. Environ Sci Nano 8:3699–3710

    CAS  Article  Google Scholar 

  • Wu X, Hou H, Liu Y et al (2022) Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study. J Hazard Mater 422:126834

    CAS  Article  Google Scholar 

  • Xu G, Liu Y, Yu Y (2021) Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean. Sci Total Environ 783:147016

    CAS  Article  Google Scholar 

  • Yan CR, He WQ, Mei XR (2010) Agricultural application of plastic film and its residue pollution prevention. Beijing Science Press, Beijing, pp 76–86

    Google Scholar 

  • Yang M, Huang DY, Tian YB et al (2021) Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.). Ecotoxicol Environ Saf 222:112480

    CAS  Article  Google Scholar 

  • Yu H, Zhang X, Hu J et al (2020) Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environ Pollut 265:114830

    CAS  Article  Google Scholar 

  • Yu H, Peng J, Cao X et al (2021) Effects of microplastics and glyphosate on growth rate, morphological plasticity, photosynthesis, and oxidative stress in the aquatic species Salvinia cucullata. Environ Pollut 279:116900

    CAS  Article  Google Scholar 

  • Zeb A, Liu W, Meng L et al (2022) Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: a study involving physio-biochemical properties and metabolomic profiles. J Hazard Mater 424:127405

    CAS  Article  Google Scholar 

  • Zhang Z, Luo X, Fan Y et al (2015) Cumulative effects of powders of degraded PE mulching-films on chemical properties of soil. Environ Sci Technol 38:115–119

    CAS  Google Scholar 

  • Zhang K, Su J, Xiong X et al (2016) Microplastic pollution of lakeshore sediments from remote lakes in Tibet Plateau, China. Environ Pollut 219:450–455

    CAS  Article  Google Scholar 

  • Zhang GS, Zhang FX, Li XT (2019) Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci Total Environ 670:1–7

    CAS  Article  Google Scholar 

  • Zhang S, Han B, Sun Y et al (2020) Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater 388:121775

    CAS  Article  Google Scholar 

  • Zhang Q, Zhao M, Meng F et al (2021) Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics 9:179

    CAS  Article  Google Scholar 

  • Zhou J, Cao Y, Liu X et al (2020) Bladder entrance of microplastic likely induces toxic effects in carnivorous macrophyte Utricularia aurea Lour. Environ Sci Pollut Res 27:32124–32131

    CAS  Article  Google Scholar 

  • Zhou J, Gui H, Banfield CC et al (2021) The microplastic sphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem 156:108211

    CAS  Article  Google Scholar 

  • Zhu F, Zhu C, Wang C et al (2019) Occurrence and ecological impacts of microplastics in soil systems: a review. Bull Environ Contam Toxicol 102:741–749

    CAS  Article  Google Scholar 

  • Zong X, Zhang J, Zhu J et al (2021) Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicol Environ Saf 217:112217

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (42007108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, S., Yu, Y. et al. Effects of Microplastics on Higher Plants: A Review. Bull Environ Contam Toxicol 109, 241–265 (2022). https://doi.org/10.1007/s00128-022-03566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03566-8

Keywords

  • Microplastics
  • Higher plants
  • Toxicity
  • Influencing mechanism