Skip to main content
Log in

Mechanisms of Metal Tolerance in Halophytes: A Mini Review

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Industrialization and urbanization of coastal wetlands have caused metal pollution worldwide. Phytoremediation has been widely used for treating soil and water pollution, and halophytes are considered a promising remediation method to address metal pollution. However, application of halophytes in phytoremediation is still in its infancy. To increase awareness of halophytes, the metal accumulation, tolerance, and mechanisms of metal detoxification in halophytes are reviewed here. Several halophytes are considered as potential candidates for phytoremediation because they have strong accumulation capacity of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta J, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85(8):1318–1324

    Article  CAS  Google Scholar 

  • Amari T, Ghnaya T, Debez A, Taamali M, Youssef NB, Lucchini G, Sacchi GA, Abdelly C (2014) Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. J Plant Physiol 171(17):1634–1644

    Article  CAS  Google Scholar 

  • Amari T, Ghnaya T, Sghaier S, Porrini M, Lucchini G, Attilio G, Abdelly C (2016) Evaluation of the Ni2+ phytoextraction potential in Mesembryanthemum crystallinum (halophyte) and Brassica juncea. J Bioremediat Biodegrad 7:366. https://doi.org/10.4172/2155-6199.1000336

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Válega M, Pacheco M, Figueira E, Duarte AC, Pereira E (2012) Salt marsh macrophyte Phragmites australis strategies assessment for its dominance in mercury-contaminated coastal lagoon (Ria de Aveiro, Portugal). Environ Sci Pollut Res 19(7):2879–2888

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Válega M, Mohmood I, Gill SS, Tuteja N, Duarte AC, Pereira E (2014) Salt marsh halophyte services to metal–metalloid remediation: assessment of the processes and underlying mechanisms. Crit Rev Environ Sci Technol 44(18):2038–2106

    Article  CAS  Google Scholar 

  • Ayyappan D, Sathiyaraj G, Ravindran KC (2016) Phytoextraction of heavy metals by Sesuvium portulacastrum I. a salt marsh halophyte from tannery effluent. Int J Phytoremediation 18(5):453–459

    Article  CAS  Google Scholar 

  • Bankaji I, Sleimi N, López-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2014) Effects of combined abiotic stresses on growth, trace element accumulation, and phytohormone regulation in two halophytic species. J Plant Growth Regul 33(3):632–643

    Article  CAS  Google Scholar 

  • Bankaji I, Caçador I, Sleimi N (2015) Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Environ Sci Pollut Res 22(17):13058–13069

    Article  CAS  Google Scholar 

  • Bankaji I, Sleimi N, Gómez Cadenas A, Pérez Clemente RM (2016) NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus. Span J Agric Res 14(4):e0810. https://doi.org/10.5424/sjar/2016144-10117

    Article  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2(3):333–344

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  • Boularbah A, Morel JL, Bitton G, Mench M (1996) A direct solid-phase assay specific for heavy-metal toxicity. II. Assessment of heavy-metal immobilization in soils and bioavailability to plants. Soil Sediment Contam 5(4):395–404

    Article  CAS  Google Scholar 

  • Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, Luque T, Figueroa M (2011) The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto-Odiel estuary (SW Spain). Hydrobiologia 671(1):95

    Article  Google Scholar 

  • Cambrollé J, Mancilla-Leytón J, Muñoz-Vallés S, Luque T, Figueroa M (2012) Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86(9):867–874

    Article  Google Scholar 

  • Castro R, Pereira S, Lima A, Corticeiro S, Válega M, Pereira E, Duarte A, Figueira E (2009) Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76(10):1348–1355

    Article  CAS  Google Scholar 

  • Chai M, Shi F, Li R, Liu L, Liu Y, Liu F (2013) Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regul 71(2):171–179

    Article  CAS  Google Scholar 

  • Chen JP, Wang LK, Wang MHS, Hung YT, Shammas NK (2016) Remediation of heavy metals in the environment (1st edn) CRC Press, Boca Raton. https://doi.org/10.1201/9781315374536

    Book  Google Scholar 

  • da Silva MN, Mucha AP, Rocha AC, Teixeira C, Gomes CR, Almeida CMR (2014) A strategy to potentiate Cd phytoremediation by saltmarsh plants–autochthonous bioaugmentation. J Environ Manag 134:136–144

    Article  Google Scholar 

  • Eissa MA, Elgharably GA, Ghoneim M, AbdElRazek M (2011) Phytoremediation of cadmium, lead and nickel from the contaminated soils by halophyte species. Assiut J Agric Sci 42:529–543

    Google Scholar 

  • Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z (2018) Tolerance and bioaccumulation of combined copper, zinc, and cadmium in Sesuvium portulacastrum. Mar Pollut Bull 131:416–421

    Article  CAS  Google Scholar 

  • Fitzgerald E, Caffrey J, Nesaratnam S, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut 123(1):67–74

    Article  CAS  Google Scholar 

  • Fourati E, Vogel-Mikuš K, Wali M, Kavčič A, Gomilšek JP, Kodre A, Kelemen M, Vavpetič P, Pelicon P, Abdelly C (2020) Nickel tolerance and toxicity mechanisms in the halophyte Sesuvium portulacastrum L. as revealed by Ni localization and ligand environment studies. Environ Sci Pollut Res 27(19):23402–23410

    Article  CAS  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162(10):1133–1140

    Article  CAS  Google Scholar 

  • Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90(4):1449–1454

    Article  CAS  Google Scholar 

  • Han R-M, Lefèvre I, Ruan C-J, Beukelaers N, Qin P, Lutts S (2012a) Effects of salinity on the response of the wetland halophyte Kosteletzkya virginica (L.) Presl. to copper toxicity. Water, Air Soil Pollut 223(3):1137–1150

    Article  CAS  Google Scholar 

  • Han R-M, Lefevre I, Ruan C-J, Qin P, Lutts S (2012b) NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul 68(1):97–109

    Article  CAS  Google Scholar 

  • Huang G-Y, Wang Y-S (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77(7):1026–1029

    Article  CAS  Google Scholar 

  • Huang G-Y, Wang Y-S (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99(1):86–92

    Article  CAS  Google Scholar 

  • Jiang X, Wang C (2008) Zinc distribution and zinc-binding forms in Phragmites australis under zinc pollution. J Plant Physiol 165(7):697–704

    Article  CAS  Google Scholar 

  • Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92(2):336–342

    Article  CAS  Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytorem 10(1):31–46

    Article  CAS  Google Scholar 

  • Kumari A, Sheokand S, Kumar A, Mann A, Kumar N, Devi S, Rani B, Kumar A, Meena B (2019) Halophyte growth and physiology under metal toxicity, ecophysiology, abiotic stress responses and utilization of halophytes. In: Hasanuzzaman M et al (eds) Ecophysiology, abiotic stress responses. Springer, Singapore, pp 83–113. https://doi.org/10.1007/978-981-13-3762-8_5

    Chapter  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65(1):142–152

    Article  Google Scholar 

  • Leng B, Jia W, Yan X, Yuan F, Dong X, Wang B (2018) Cadmium stress in halophyte Thellungiella halophila: consequences on growth, cadmium accumulation, reactive oxygen species and antioxidative systems. IOP Conf Ser: Earth Environ Sci 153:062002. https://doi.org/10.1088/1755-1315/153/6/062002

    Article  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115(3):509–528

    Article  CAS  Google Scholar 

  • Lutts S, Lefevre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33(4):1271–1279

    Article  CAS  Google Scholar 

  • MacFarlane G, Burchett M (1999) Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh. Environ Exp Bot 41(2):167–175

    Article  CAS  Google Scholar 

  • MacFarlane G, Burchett M (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68(1):45–59

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16(7):844–854

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660

    Article  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106(3):326–332

    Article  CAS  Google Scholar 

  • Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Lutts S, Abdelly C, Ghnaya T (2015) Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci 6:156

    Article  Google Scholar 

  • Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2018) Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad Dev 29(4):1081–1095

    Article  Google Scholar 

  • Nikalje GC, Bhaskar SD, Yadav K, Penna S (2019) Halophytes: prospective plants for future. In: Hasanuzzaman M (ed) Ecophysiology, abiotic stress responses and utilization of halophytes. Springer, Singapore, pp 221–234. https://doi.org/10.1007/978-981-13-3762-8_10

    Chapter  Google Scholar 

  • Panda A, Rangani J, Kumari A, Parida AK (2017) Efficient regulation of arsenic translocation to shoot tissue and modulation of phytochelatin levels and antioxidative defense system confers salinity and arsenic tolerance in the halophyte Suaeda maritima. Environ Exp Bot 143:149–171

    Article  CAS  Google Scholar 

  • Pérez-Romero JA, Redondo-Gómez S, Mateos-Naranjo E (2016) Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiol Biochem 109:103–113

    Article  Google Scholar 

  • Rabier J, Laffont-Schwob I, Pricop A, Ellili A, D’Enjoy-Weinkammerer G, Salducci M-D, Prudent P, Lotmani B, Tonetto A, Masotti V (2014) Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water Air Soil Pollut 225(7):1993

    Article  Google Scholar 

  • Reboredo F (2012) Zinc compartmentation in Halimione portulacoides (L.) Aellen and some effects on leaf ultrastructure. Environ Sci Pollut Res 19(7):2644–2657

    Article  CAS  Google Scholar 

  • Reboreda R, Cacador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146(1):147–154

    Article  CAS  Google Scholar 

  • Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40(9):913–921

    Article  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184(1–3):299–307

    Article  Google Scholar 

  • Rejeb KB, Ghnaya T, Zaier H, Benzarti M, Baioui R, Ghabriche R, Wali M, Lutts S, Abdelly C (2013) Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecol Eng 60:309–315

    Article  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138

    Article  CAS  Google Scholar 

  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PK (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:66

    Article  Google Scholar 

  • Sghaier DB, Duarte B, Bankaji I, Caçador I, Sleimi N (2015) Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: arsenic and NaCl. J Photochem Photobiol, B 149:204–214

    Article  CAS  Google Scholar 

  • Sghaier DB, Pedro S, Diniz MS, Duarte B, Caçador I, Sleimi N (2016) Tissue localization and distribution of as and Al in the halophyte Tamarix gallica under controlled conditions. Front Mar Sci 3:274

    Article  Google Scholar 

  • Sharma A, Gontia I, Agarwal PK, Jha B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6(5):511–518

    Article  Google Scholar 

  • Smaoui A, Barhoumi Z, Rabhi M, Abdelly C (2011) Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma 248(2):363–372

    Article  CAS  Google Scholar 

  • Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra-and extra-cellular metal binding sites. Chemosphere 70(5):850–857

    Article  CAS  Google Scholar 

  • Srivastava AK, Srivastava S, Lokhande VH, D’Souza SF, Suprasanna P (2015) Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front Environ Sci 3:19

    Article  Google Scholar 

  • Sruthi P, Shackira AM, Puthur JT (2017) Heavy metal detoxification mechanisms in halophytes: an overview. Wetlands Ecol Manag 25(2):129–148

    Article  CAS  Google Scholar 

  • Taamalli M, Ghabriche R, Amari T, Mnasri M, Zolla L, Lutts S, Abdely C, Ghnaya T (2014) Comparative study of Cd tolerance and accumulation potential between Cakile maritima L. (halophyte) and Brassica juncea L. Ecol Eng 71:623–627

    Article  Google Scholar 

  • Trivedi S, Ansari AA (2015) Molecular mechanisms in the phytoremediation of heavy metals from coastal waters phytoremediation. In: Ansari et al (eds) Phytoremediation management of environmental contaminants. Springer, Cham, pp 219–231

    Google Scholar 

  • Usman K, Al-Ghouti MA, Abu-Dieyeh MH (2018) Phytoremediation: halophytes as promising heavy metal hyperaccumulators. Heavy Metals. https://doi.org/10.5772/intechopen.73879

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776

    Article  CAS  Google Scholar 

  • Visioli G, Marmiroli N (2013) The proteomics of heavy metal hyperaccumulation by plants. J Proteomics 79:133–145

    Article  CAS  Google Scholar 

  • Wali M, Fourati E, Hmaeid N, Ghabriche R, Poschenrieder C, Abdelly C, Ghnaya T (2015) NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environ Sci Pollut Res 22(14):10769–10777

    Article  CAS  Google Scholar 

  • Windham L, Weis J, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56(1):63–72

    Article  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183(1–3):609–615

    Article  CAS  Google Scholar 

  • Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1):44–50

    Article  CAS  Google Scholar 

  • Zhang S, Ni X, Arif M, Yuan Z, Li L, Li C (2020) Salinity influences Cd accumulation and distribution characteristics in two contrasting halophytes, Suaeda glauca and Limonium aureum. Ecotoxicol Environ Saf 191:110230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (41976140), Science and Technology Innovation Commission of Shenzhen (JCYJ20180507182227257, KQTD20180412181334790), China Postdoctoral Science Foundation (014420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, G., Lan, W. & Pan, K. Mechanisms of Metal Tolerance in Halophytes: A Mini Review. Bull Environ Contam Toxicol 109, 671–683 (2022). https://doi.org/10.1007/s00128-022-03487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03487-6

Keywords

Navigation