Skip to main content
Log in

Effects of Lead on Reproduction Physiology and Liver and Gonad Histology of Male Cyprinus carpio

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Sera 17β-estradiol (E2), 11-ketotesteron (11-KT) and 17,20-β-dihydroxy-4-pregnen-3-one (17,20βP) levels and hepatosomatic-gonadosomatic indexes (HSI-GSI) were determined after exposing male C. carpio to 0.13 and 0.26 mg L−1 lead after 7, 14 and 21 days. Histological changes in liver and gonad tissues of male C. carpio were also determined. Sera E2, 11-KT and 17,20βP levels of male fish although showed differences from the control fish, these differences were not statistically significant. This was also true for the HSI values, the GSI values however, decreased on day 7 under the effect of 0.26 mg L−1 Pb. Dilatation in bile duct and sinusoids and lymphocyte infiltration were observed under histopathological examination. Low intensities of fibrosis were detected in testis tissues. Exposure to low concentrations of Pb did not cause endocrine disrupting and extensive histopathologic effects in C. carpio at the exposure periods tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alam M, Maughan O (1992) The effect of malathion, diazinon, and various concentrations of zinc, copper, nickel, lead, iron, and mercury on fish. Biol Trace Elem Res 34(3):225–236

    Article  CAS  Google Scholar 

  • Allen-Gil S, Curtis L, Lasorsa B, Crecelius E, Landers D (1993) Plasma testosterone as a sensitive biomarker to heavy metal exposure in feral arctic fish. Paper presented at the 14 th Annual Meeting (SETAC)-Ecological risk assessment: lessons learned?—Abstract Book

  • Arellano JM, Storch V, Sarasquete C (1999) Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicol Environ Safe 44(1):62–72

    Article  CAS  Google Scholar 

  • Benze TP, Sakuragui MM, de Paula Zago LH, Fernandes MN (2016) Subchronic exposure to diflubenzuron causes health disorders in neotropical freshwater fish, P. Rochilodus lineatus. Environ Toxicol 31(5):533–542

    CAS  Google Scholar 

  • Bettini S, Ciani F, Franceschini V (2006) Recovery of the olfactory receptor neurons in the African Tilapia mariae following exposure to low copper level. Aquat Toxicol 76(3–4):321–328

    Article  CAS  Google Scholar 

  • Campana O, Sarasquete C, Blasco J (2003) Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol Environ Saf 55(1):116–125

    Article  CAS  Google Scholar 

  • Chaube R, Mishra S, Singh RK (2010) In vitro effects of lead nitrate on steroid profiles in the post-vitellogenic ovary of the catfish Heteropneustes fossilis. Toxicol in Vitro 24(7):1899–1904

    Article  CAS  Google Scholar 

  • Choe S-Y, Kim S-J, Kim H-G, Lee JH, Choi Y, Lee H, Kim Y (2003) Evaluation of estrogenicity of major heavy metals. Sci Total Environ 312(1–3):15–21

    Article  CAS  Google Scholar 

  • Choi SM, Yoo SD, Lee BM (2004) Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. J Toxicol Environ Health Part B 7(1):1–23

    Article  CAS  Google Scholar 

  • Costa PM, Diniz MS, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TÁ, Costa MH (2009) Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquat Toxicol 92(3):202–212

    Article  CAS  Google Scholar 

  • Darbre P (2006) Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol 26(3):191–197

    Article  CAS  Google Scholar 

  • Davey JC, Bodwell JE, Gosse JA, Hamilton JW (2007) Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor–mediated gene expression in vivo and in cell culture. Toxicol Sci 98(1):75–86

    Article  CAS  Google Scholar 

  • do Carmo Silva JP, da Costa MR, Araújo FG (2019) Energy acquisition and allocation to the gonadal development of Cynoscion leiachus (Perciformes, Sciaenidae) in a tropical Brazilian bay. Mar Biol Res 15(2):170–180

    Article  Google Scholar 

  • Dyer C (2007) Heavy metals as endocrine-disrupting chemicals. In: Gore AC (ed) Endocrine-disrupting chemicals: from basic research to clinical practice. Humana Press, Totowa, pp 111–133

    Chapter  Google Scholar 

  • Ebrahimi M, Taherianfard M (2011) The effects of heavy metals exposure on reproductive systems of cyprinid fish from Kor River. Iran J Fish Sci 10(1):13–26

    Google Scholar 

  • Fatima M, Usmani N (2013) Histopathology and bioaccumulation of heavy metals (Cr, Ni and Pb) in fish (Channa striatus and Heteropneustes fossilis) tissue: a study for toxicity and ecological impacts. Pak J Biol Sci 16(9):412–420

    Article  CAS  Google Scholar 

  • Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos P, Fontaínhas-Fernandes A (2007) Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesq Vet Bras 27(3):103–109

    Article  Google Scholar 

  • Friedmann A, Watzin M, Leiter J, Brinck-Johnsen T (1996) Effects of environmental mercury on gonadal function in Lake Champlain northern pike (Esox lucius). Bull Environ Contam Toxicol 56(3):486–492

    Article  CAS  Google Scholar 

  • Georgescu B, Georgescu C, Dărăban S, Bouaru A, Paşcalău S (2011) Heavy metals acting as endocrine disrupters. Sci Papers Anim Sci Biotechnol 44(2):89–93

    Google Scholar 

  • Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10(2):486

    Article  Google Scholar 

  • Hammerschmidt CR, Sandheinrich MB, Wiener JG, Rada RG (2002) Effects of dietary methylmercury on reproduction of fathead minnows. Environ Sci Technol 36(5):877–883

    Article  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health Part B 12(3):206–223

    Article  CAS  Google Scholar 

  • Kaoud H, El-Dahshan A (2010) Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nat Sci 8(4):147–156

    Google Scholar 

  • Kim J-H, Kang J-C (2015) The lead accumulation and hematological findings in juvenile rock fish Sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicol Environ Saf 115:33–39

    Article  CAS  Google Scholar 

  • Kime DE (2012) Endocrine disruption in fish. Springer, New York

    Google Scholar 

  • Kirubagaran R, Joy K (1992) Toxic effects of mercury on testicular activity in the freshwater teleost, Clarias batrachus (L.). J Fish Biol 41(2):305–315

    Article  CAS  Google Scholar 

  • Korkmaz C, Ay Ö, Dönmez AE, Demirbağ B, Erdem C (2020) Influence of lead on reproductive physiology and gonad and liver histology of female Cyprinus carpio. Thalassas 36:1–10

    Article  Google Scholar 

  • Kumar S, Pant S (1984) Comparative effects of the sublethal poisoning of zinc, copper and lead on the gonads of the teleost Puntius conchonius Ham. Toxicol Lett 23(2):189–194

    Article  CAS  Google Scholar 

  • Kumari M, Dutt NG (1991) Cadmium-induced histomorphological changes in the testis and pituitary gonadotrophic hormone secreting cells of the cyprinid Puntius sarana. Ital J Zool 58(1):71–76

    Google Scholar 

  • Kunz PY, Fent K (2006) Estrogenic activity of UV filter mixtures. Toxicol Appl Pharmacol 217(1):86–99

    Article  CAS  Google Scholar 

  • Levesque H, Moon T, Campbell P, Hontela A (2002) Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquat Toxicol 60(3–4):257–267

    Article  CAS  Google Scholar 

  • Maanan M (2008) Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ Pollut 153(1):176–183

    Article  CAS  Google Scholar 

  • Mansour DF, Saleh DO, Ahmed-Farid OA, Rady M, Bakeer RM, Hashad IM (2021) Ginkgo biloba extract (EGb 761) mitigates methotrexate-induced testicular insult in rats: targeting oxidative stress, energy deficit and spermatogenesis. Biomed Pharmacother 143:112201

    Article  CAS  Google Scholar 

  • Mantovani A, Stazi A, Macri C, Maranghi F, Ricciardi C (1999) Problems in testing and risk assessment of endocrine disrupting chemicals with regard to developmental toxicology. Chemosphere 39(8):1293–1300

    Article  CAS  Google Scholar 

  • Mishra AK, Mohanty B (2012) Effect of sublethal hexavalent chromium exposure on the pituitary-ovarian axis of a teleost, Channa punctatus (Bloch). Environ Toxicol 27(7):415–422

    Article  CAS  Google Scholar 

  • Muramoto S (1983) Elimination of copper from Cu-contaminated fish by long-term exposure to EDTA and fresh water. J Environ Sci Health Part A 18(3):455–461

    Google Scholar 

  • Oishi S (2002) Effects of propyl paraben on the male reproductive system. Food Chem Toxicol 40(12):1807–1813

    Article  CAS  Google Scholar 

  • Pine M, Lee B, Dearth R, Hiney JK, Dees WL (2005) Manganese acts centrally to stimulate luteinizing hormone secretion: a potential influence on female pubertal development. Toxicol Sci 85(2):880–885

    Article  CAS  Google Scholar 

  • Raldúa D, Díez S, Bayona JM, Barceló D (2007) Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. Chemosphere 66(7):1217–1225

    Article  Google Scholar 

  • Roy D, Palangat M, Chen C-W, Thomas RD, Colerangle J, Atkinson A, Yan Z-J (1997) Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. J Toxicol Environ Health A 50(1):1–30

    Article  CAS  Google Scholar 

  • Ruby SM, Jaroslawski P, Hull R (1993) Lead and cyanide toxicity in sexually maturing rainbow trout, Oncorhynchus mykiss during spermatogenesis. Aquat Toxicol 26(3–4):225–238

    Article  CAS  Google Scholar 

  • Sellin MK, Kolok AS (2006) Cadmium exposures during early development: do they lead to reproductive impairment in Fathead minnows? Environ Toxicol Chem 25(11):2957–2963

    Article  CAS  Google Scholar 

  • Short S and Meyers TR (2001) Histology for finfish. NWFHS laboratory procedures manual. Version, 1(0).

  • Shukla JP, Pandey K (1984) Impaired spermatogenesis in arsenic treated freshwater fish, Colisa fasciatus (Bl. and Sch.). Toxicol Lett 21(2):191–195

    Article  CAS  Google Scholar 

  • Singh H (1989) Interaction of xenobiotics with reproductive endocrine functions in a protogynous teleost, Monopterus albus. Mar Environ Res 28(1–4):285–289

    Article  CAS  Google Scholar 

  • Srivastava A (1987) Changes induced by lead in fish testis. J Environ Biol 8(4):329–332

    Google Scholar 

  • Tseng C-H, Chong C-K, Tseng C-P, Hsueh Y-M, Chiou H-Y, Tseng C-C, Chen C-J (2003) Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett 137(1–2):15–21

    Article  CAS  Google Scholar 

  • Van Dyk JC, Pieterse G, Van Vuren J (2007) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66(3):432–440

    Article  Google Scholar 

  • Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutat Res Genet Toxicol Environ Mutagen 698(1):43–51

    Article  CAS  Google Scholar 

  • Weber D (1993) Exposure to sublethal levels of waterborne lead alters reproductive behavior patterns in fathead minnows (Pimephales promelas). Neurotoxicology 14(2–3):347–358

    CAS  Google Scholar 

  • Wong P, Silverberg B, Chau Y, Hodson P (1978) Lead and the aquatic biota. The biogeochemistry of lead in the environment. Part B. Biological effects. Elsevier/North Holland Biomedical Press, Amsterdam, pp 279–342

    Google Scholar 

  • Yamaguchi S, Miura C, Ito A, Agusa T, Iwata H, Tanabe S, Tuyen BC, Miura T (2007) Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: monitoring at Mekong Delta area and in vitro experiment. Aquat Toxicol 83(1):43–51

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Research Project Coordination Unit of Mersin University (2016-2-TP3-1835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz Korkmaz.

Ethics declarations

Conflict of interest

Authors Cengiz Korkmaz, Özcan Ay, Ahmet Erdem Dönmez, Burcu Demirbağ and Cahit Erdem declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, C., Ay, Ö., Dönmez, A.E. et al. Effects of Lead on Reproduction Physiology and Liver and Gonad Histology of Male Cyprinus carpio. Bull Environ Contam Toxicol 108, 685–693 (2022). https://doi.org/10.1007/s00128-021-03426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03426-x

Keywords

Navigation