Skip to main content
Log in

Wheat Cultivar Growth, Biochemical, Physiological and Yield Attributes Response to Combined Exposure to Tropospheric Ozone, Particulate Matter Deposition and Ascorbic Acid Application

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In the present study wheat (Triticum aestivum) cultivar HD 2967 was exposed to ambient and elevated levels of O3 and PM deposition, with and without exogenous application of ascorbic acid (AA). Cultivar HD 2967 exposed to eight treatments in free air O3 enrichment facility and the assessed results showed that wheat cultivar, growth, biochemical, physiological and yield attributes were variably but adversely affected by combined exposure to O3 and PM deposition. PM deposition clogged stomata and enhanced leaf temperature. However, plants exposed to O3 and PM deposition and treated with AA exhibited less reduction in yield as compared to plants exposed to O3 and PM deposition without AA treatment. The decline in grain yield of HD 2967 due to combined exposure of O3 and PM deposition were in the range of 4%–17%. AA spray partially mitigated ozone and PM deposition adverse impact and enhanced wheat yield by 16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JN (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126(3):323–329

    Article  CAS  Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biol 14(7):1642–1650

    Article  Google Scholar 

  • Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA (2014) Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynth Res 119(1–2):65–76

    Article  CAS  Google Scholar 

  • Auerbach NA, Walker MD, Walker DA (1997) Effects of roadside disturbance on substrate and vegetation properties in Arctic Tundra. Ecol Appl 7:218–235

    Article  Google Scholar 

  • Bernacchi CJ, Leakey AD, Hepmy LE, Morgan PB, Dohleman FG, McGrath JM, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29(11):2077–2090

    Article  CAS  Google Scholar 

  • Burney J, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. Proc Natl Acad Sci USA 111(46):16319–16324

    Article  CAS  Google Scholar 

  • Burkhardt J, Pariyar S (2014) Particulate pollutants are capable to ‘degrade’epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.). Environ Pollut 184:659–667

    Article  CAS  Google Scholar 

  • Burkhardt J, Basi S, Pariyar S, Hunsche M (2012) Stomatal penetration by aqueous solutions–an update involving leaf surface particles. New Phytol 196(3):774–787

    Article  CAS  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28(3):231–238

    Article  CAS  Google Scholar 

  • Daripa A, Bhatia A, Ojha S, Tomer R, Chatterjee S, Singh KP, Singh SD (2016) Chemical and natural plant extract in ameliorating negative impact of tropospheric ozone on wheat crop: a case study in a part of semiarid north west India. Aerosol Air Qual Res 16(7):1742–1756

    Article  CAS  Google Scholar 

  • Didyk NP, Blum OB (2011) Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant 33(1):25–34

    Article  CAS  Google Scholar 

  • Evans LS, Ting IP (1974) Ozone sensitivity of leaves: relationship to leaf water content, gas transfer resistance, and anatomical characteristics. Am J Bot 61:592–597

    Article  Google Scholar 

  • Fatima S, Sehgal A, Mishra SK, Mina U, Goel V, Vijayan N, Tawale JS, Kothari R, Ahlawat A, Sharma C (2021) Particle composition and morphology over urban environment (New Delhi): plausible effects on wheat leaves. Environ Res 202:111552

    Article  CAS  Google Scholar 

  • Farmer AM (1993) The effect of dust on vegetation-a review. Environ Pollut 538(79):63–75

    Article  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Change Biol 14(11):2696–2708

    Article  Google Scholar 

  • Feng Z, Calatayud V, Zhu J, Kobayashi K (2018) Ozone exposure- and flux-based response relationships with photosynthesis of winter wheat under fully open air condition. Sci Total Environ 619–620:1538–1544

    Article  CAS  Google Scholar 

  • Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Südekum KH, Kohno Y (2012) Leaf ascorbic acid level–is it really important for ozone tolerance in rice? Plant Physiol Biochem 59:63–70

    Article  CAS  Google Scholar 

  • Genga A, Baglivi F, Siciliano M, Siciliano T, Tepore M, Micocci G, Tortorella C, Aiello D (2012) SEM-EDS investigation on PM10 data collected in Central Italy: principal component analysis and hierarchical cluster analysis. Chem Cent J 6(2):S3

    Article  CAS  Google Scholar 

  • Ghude SD, Jain SL, Arya BC, Beig G, Ahammed YN, Kumar A, Tyagi B (2008) Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices. J Atmos Chem 60(3):237–252

    Article  CAS  Google Scholar 

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reductions in India’s crop yield due to ozone. Geophys Res Lett 41(15):5685–5691

    Article  Google Scholar 

  • Grantz DA, Zinsmeister D, Burkhardt J (2018) Ambient aerosl increases minimum leaf conductance and alters the aperture–flux relationship as stomata respond to vapor pressure deficit (VPD). New Phytol 219(1):275–286

    Article  Google Scholar 

  • Jamir C (2011) Assessing Ozone impacts on arable crops in South Asia: identification of suitable risk assessment methods to improve crop biotechnology (Doctoral dissertation, University of York

  • Kameswaran S, Gunavathi Y, Gopi Krishna P (2019) Dust pollution and its influence on vegetation–a critical analysis. Life Science Informatics Publication, Pune

    Google Scholar 

  • Lal DM, Ghude SD, Patil SD, Kulkarni SH, Jena C, Tiwari S, Srivastava MK (2012) Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos Res 116:82–92

    Article  CAS  Google Scholar 

  • Liu YJ, Ding H (2008) Variation in air pollution tolerance index of plants near a steel factory: implications for landscape-plant species selection for industrial areas. WSEAS Trans Environ Dev 4:24–32

    CAS  Google Scholar 

  • Maddison J, Lyons T, Plöchl M, Barnes J (2002) Hydroponically cultivated radish fed L-galactono-1, 4-lactone exhibit increased tolerance to ozone. Planta 214(3):383–391

    Article  CAS  Google Scholar 

  • Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31(1):72

    CAS  Google Scholar 

  • Mina U, Fuloria A, Aggarwal R (2016) Effect of ozone and antioxidants on wheat and its pathogen—Bipolaris sorokininana. Cereal Res Comm 44(4):594–604

    Article  CAS  Google Scholar 

  • Mina U, Chandrashekara T, Kumar SN, Meena M, Yadav S, Tiwari S, Singh D, Kumar P, Kumar R (2018) Impact of particulate matter on basmati rice varieties grown in Indo-Gangetic Plains of India: growth, biochemical, physiological and yield attributes. Atmos Environ 188:174–184

    Article  CAS  Google Scholar 

  • Mina U, Smiti K, Yadav P (2021) Thermotolerant wheat cultivar (Triticum aestivum L. var. WR544) response to ozone, EDU, and particulate matter interactive exposure. Environ Monit Assess 193(6):1–16

    Article  CAS  Google Scholar 

  • Nanos GD, Ilias IF (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environ Sci Pollut Res Int 14(3):212–214

    Article  CAS  Google Scholar 

  • Rai PK (2016) Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicol Environ Saf 129:120–136

    Article  CAS  Google Scholar 

  • Rai PK, Panda LL, Chutia BM, Singh MM (2013) Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non-industrial area (Aizawl) of India: an eco-management approach. Afr J Environ Sci Technol 7(10):944–948

    Google Scholar 

  • Rahul J, Jain MK (2014) An investigation in to the impact of particulate matter on vegetation along the National Highway: review. Res J Environ Sci 8:356–372

    Article  CAS  Google Scholar 

  • Roy SD, Beig G, Ghude SD (2009) Exposure-plant response of ambient ozone over the tropical Indian region. Atmos Chem Phys 9:5253–5260

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot 69(3):328–337

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2012) Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers. J Environ Manage 95:S19–S24

    Article  CAS  Google Scholar 

  • Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H (2015) Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmos Environ 105:53–60

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M, Marshall FM (2006) Evaluation of ambient air pollution impact on carrot plants at a suburban site using open-top chambers. Environ Monit Assess 119(1):15–30

    Article  CAS  Google Scholar 

  • Tiwari S, Chate DM, Pragya P, Ali K, Bisht DS (2012) Variations in mass of the PM10, PM2.5 and PM1 during the monsoon and the winter at New Delhi. Aerosol Air Qual Res 12(1):20–29

    Article  CAS  Google Scholar 

  • Tomer R, Bhatia A, Kumar V, Kumar A, Singh R, Singh B, Singh SD (2015) Impact of elevated ozone on growth, yield and nutritional quality of two wheat species in Northern India. Aerosol Air Qual Res 15(1):329–340

    Article  CAS  Google Scholar 

  • Turk R, Wirth V (1975) The pH dependence of SO2 damage to lichens. Oecologia 811(19):285–291

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2016) Integrated science assessment for ozone and related photochemical oxidants [EPA Report - EPA/600/R-10/076F]. Research Triangle Park, NC

  • Zheng Y, Cheng D, Simmons M (2014) Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars. Sci Total Environ 499:18–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Indian Council for Agricultural Research to Indian Agriculture Research Institute for conducting the study and critical comments received from the reviewers for improving the manuscript are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Mina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mina, U., Kandpal, A., Bhatia, A. et al. Wheat Cultivar Growth, Biochemical, Physiological and Yield Attributes Response to Combined Exposure to Tropospheric Ozone, Particulate Matter Deposition and Ascorbic Acid Application. Bull Environ Contam Toxicol 107, 938–945 (2021). https://doi.org/10.1007/s00128-021-03373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03373-7

Keywords

Navigation