Skip to main content
Log in

Determination of Fipronil and Fipronil-Sulfone in Surface Waters of the Guandu River Basin by High-Performance Liquid Chromatography with Mass Spectrometry

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Fipronil (FIP) is a broad-spectrum insecticide used in the industrial, residential and agricultural sectors, which presents environmental and human health risks. Studies report its presence in aquatic environments in several countries, but in Brazil reports are scarce. The aim of this work was to evaluate the presence of fipronil and fipronil sulfone in surface waters through a validated analytical method by LC–MS according to INMETRO and USEPA in eight sampling sites in two seasons (summer and autumn, 2020) in Guandu River basin, in the state of Rio de Janeiro. FIP was quantified in the concentration range of 0.132–2.44 μg/L, while FIP-S was detected in most samples. This is the first study on the occurrence of FIP and FIP-S in the Guandu River basin, presenting values high enough to justify the need for monitoring studies in a region of great importance for the city of Rio de Janeiro.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alygizakis NA, Besselink H, Paulus GK, Oswald P, Hornstra LM, Oswaldova M, Medema G, Thomaidis NS, Behnisch PA, Slobodnik J (2019) Characterization of wastewater effluents in the Danube River Basin with chemical screening, in vitro bioassays and antibiotic resistant genes analysis. Environ Int 127:420–429. https://doi.org/10.1016/j.envint.2019.03.060

    Article  CAS  Google Scholar 

  • Bianco K, Albano RM, de Oliveira SS, Alves Nascimento AP, dos Santos T, Clementino MM (2020) Possible health impacts due to animal and human fecal pollution in water intended for drinking water supply of Rio de Janeiro, Brazil. J Water Supply Res Technol 69:70–84. https://doi.org/10.2166/aqua.2019.061

    Article  Google Scholar 

  • Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. https://doi.org/10.1007/s11356-014-3332-7

    Article  CAS  Google Scholar 

  • BRASIL (2021) Ministério da Saúde. PORTARIA GM/MS Nº 888, DE 4 DE MAIO DE 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União, Brasília, DF, 07 mai. 2021. Seção 1, p 127

  • BRASIL (2012) Instrução Normativa Conjunta No 1, De 28 De Dezembro De 2012. Dispõe sobre a aplicação dos ingredientes ativos Imidacloprido, Clotianidina, Tiametoxam e Fipronil. Diário Oficial da União, Brasília, DF, 04 jan. 2013. Seção 1, p 10

  • Budd R, Ensminger M, Wang D, Goh KS (2015) Monitoring fipronil and degradates in California surface waters, 2008–2013. J Environ Qual 44:1233–1240. https://doi.org/10.2134/jeq2015.01.0018

    Article  CAS  Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60. https://doi.org/10.1002/fes3.108

    Article  Google Scholar 

  • Chau NDG, Sebesvari Z, Amelung W, Renaud FG (2015) Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Pollut Res 22:9042–9058. https://doi.org/10.1007/s11356-014-4034-x

    Article  CAS  Google Scholar 

  • Comitê Guandu (2012) Bacia Hidrográfica dos Rios Guandu, da Guarda e Guandu-Mirim. Comitê Guandu, Rio de Janeiro

    Google Scholar 

  • CONAMA (2005) Conselho Nacional do Meio Ambiente. RESOLUÇÃO N° 357, DE 177 DE MARÇO DE 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília, DF, 18 mar. 2005. p 58–63

  • Cryder Z, Greenberg L, Richards J, Wolf D, Luo Y, Gan J (2019) Fiproles in urban surface runoff: understanding sources and causes of contamination. Environ Pollut 250:754–761. https://doi.org/10.1016/j.envpol.2019.04.060

    Article  CAS  Google Scholar 

  • de Araujo FG, Bauerfeldt GF, Marques M, Martins EM (2019) Development and validation of an analytical method for the detection and quantification of bromazepam, clonazepam and diazepam by UPLC-MS/MS in surface water. Bull Environ Contam Toxicol 103:362–366. https://doi.org/10.1007/s00128-019-02631

    Article  Google Scholar 

  • de Araujo FG, Bauerfeldt GF, Marques M, Martins EM (2020) Development and validation of an analytical method for detection and quantification of benzophenone, bisphenol A, diethyl phthalate and 4-nonylphenol by UPLC-MS/MS in surface water. PeerJ Anal Chem 2:e7. https://doi.org/10.7717/peerj-achem.7

    Article  Google Scholar 

  • de Morais CR, Bonetti AM, Carvalho SM, de Rezende AAA, Araujo GR, Spanó MA (2016) Assessment of the mutagenic, recombinogenic and carcinogenic potential of fipronil insecticide in somatic cells of Drosophila melanogaster. Chemosphere 165:342–351. https://doi.org/10.1016/j.chemosphere.2016.09.023

    Article  CAS  Google Scholar 

  • European Commission (2013) Regulation (EU) No 781/2013 of 14 August 2013. European Commission, Brussels

    Google Scholar 

  • Ferreira A (2014) Environmental investigation of psychiatric pharmaceuticals: Guandu River, Rio De Janeiro State, Southeast Brazil. J Chem Health Risks 4:25–32. https://doi.org/10.22034/JCHR.2018.544072

    Article  CAS  Google Scholar 

  • Gan J, Bondarenko S, Oki L, Haver D, Li JX (2012) Occurrence of fipronil and its biologically active derivatives in urban residential runoff. Environ Sci Technol 46:1489–1495. https://doi.org/10.1021/es202904x

    Article  CAS  Google Scholar 

  • Gols R, WallisDeVries MF, van Loon JJA (2020) Reprotoxic effects of the systemic insecticide fipronil on the butterfly Pieris brassicae. Proc R Soc B 287:20192665. https://doi.org/10.1098/rspb.2019.2665

    Article  CAS  Google Scholar 

  • Guandu C (2018) Plano estratégico de recursos hidricos das bacias hidrográficas do rio Guandu, da Guarda e Guandu Mirim. Comitê Guandu, Rio de Janeiro

    Google Scholar 

  • Hano T, Ito K, Ohkubo N, Sakaji H, Watanabe A, Takashima K, Sato T, Sugaya T, Matsuki K, Onduka T, Ito M, Somiya R, Mochida K (2019) Occurrence of neonicotinoids and fipronil in estuaries and their potential risks to aquatic invertebrates. Environ Pollut 252:205–215. https://doi.org/10.1016/j.envpol.2019.05.067

    Article  CAS  Google Scholar 

  • IBAMA (2018) Relatórios de comercialização de agrotóxicos, Boletim Anual de Comercialização de Agrotóxicos. https://doi.org/10.1039/C4RA05604C

  • INMETRO (2020) Orientação Sobre Validação de Métodos de Ensaios Químicos - DOQ-CGCRE-008. INMETRO, Rio de Janeiro

    Google Scholar 

  • Italia Ministero Della Salute (2013) Decreto 25 gennaio 2013. Italia Ministero Della Salute, Italy

    Google Scholar 

  • Kim YA, Yoon YS, Kim HS, Jeon SJ, Cole E, Lee J, Kho Y, Cho YH (2019) Distribution of fipronil in humans, and adverse health outcomes of in utero fipronil sulfone exposure in newborns. Int J Hyg Environ Health 222:524–532. https://doi.org/10.1016/j.ijheh.2019.01.009

    Article  CAS  Google Scholar 

  • Kurz MHS, Martel S, Gonçalves FF, Prestes OD, Martins ML, Zanella R, Adaime MB (2013) Development of a fast method for the determination of the insecticide fipronil and its metabolites in environmental waters by SPE and GC-ECD. J Braz Chem Soc 24:631–638. https://doi.org/10.5935/0103-5053.20130078

    Article  CAS  Google Scholar 

  • Li X, Chen J, He X, Wang Z, Wu D, Zheng X, Zheng L, Wang B (2019) Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography–tandem mass spectrometry. Chemosphere 234:224–231. https://doi.org/10.1016/j.chemosphere.2019.05.243

    Article  CAS  Google Scholar 

  • Marchesan E, Sartori GMS, de Avila LA, de Oliveira Machado SL, Zanella R, Primel EG, Macedo VRM, Marchezan MG (2010) Resíduos de agrotóxicos na água de rios da Depressão Central do Estado do Rio Grande do Sul, Brasil. Ciênc Rural 40:1053–1059. https://doi.org/10.1590/S0103-84782010005000078

    Article  Google Scholar 

  • McMahen RL, Strynar MJ, McMillan L, DeRose E, Lindstrom AB (2016) Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. Sci Total Environ 569–570:880–887. https://doi.org/10.1016/j.scitotenv.2016.05.085

    Article  CAS  Google Scholar 

  • Michel N, Freese M, Brinkmann M, Pohlmann J-D, Hollert H, Kammann U, Haarich M, Theobald N, Gerwinski W, Rotard W, Hanel R (2016) Fipronil and two of its transformation products in water and European eel from the river Elbe. Sci Total Environ 568:171–179. https://doi.org/10.1016/j.scitotenv.2016.05.210

    Article  CAS  Google Scholar 

  • Ministério da Saúde (2006) Vigilância e controle da qualidade da água para consumo humano. Ministério da Saúde, Brasília

    Google Scholar 

  • MOA (Ministry of Agriculture of China) (2017) Announcement No. 2583 of the Ministry of Agriculture regarding to the ban on the use of fipronil for food animals.

  • Monteiro M, Spisso B, Ferreira R, Pereira M, Grutes J, de Andrade B, D’Avila L (2017) Development and validation of liquid chromatography-tandem mass spectrometry methods for determination of beta-lactams, macrolides, fluoroquinolones, sulfonamides and tetracyclines in surface and drinking water from Rio de Janeiro, Brazil. J Braz Chem Soc 29:801–813. https://doi.org/10.21577/0103-5053.20170203

    Article  CAS  Google Scholar 

  • Montiel-León JM, Duy SV, Munoz G, Amyot M, Sauvé S (2018) Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water. Anal Bioanal Chem 410:2765–2779. https://doi.org/10.1007/s00216-018-0957-2

    Article  CAS  Google Scholar 

  • Okumura F, Amaral RB, Orestes E, Silva ABF, Mazo LH (2016) Electrochemical and quantum chemical investigations of the insecticide fipronil. J Braz Chem Soc 27:925–932. https://doi.org/10.5935/0103-5053.20150347

    Article  CAS  Google Scholar 

  • Overmyer JP, Rouse DR, Avants JK, Garrison AW, DeLorenzo ME, Chung KW, Key PB, Wilson WA, Black MC (2007) Toxicity of fipronil and its enantiomers to marine and freshwater non-targets. J Environ Sci Health B 42:471–480. https://doi.org/10.1080/03601230701391823

    Article  CAS  Google Scholar 

  • Park H, Lee J-Y, Park S, Song G, Lim W (2020) Developmental toxicity of fipronil in early development of zebrafish (Danio rerio) larvae: disrupted vascular formation with angiogenic failure and inhibited neurogenesis. J Hazard Mater 385:121531. https://doi.org/10.1016/j.jhazmat.2019.121531

    Article  CAS  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102. https://doi.org/10.1007/s11356-014-3471-x

    Article  CAS  Google Scholar 

  • Pisa L, Goulson D, Yang E-C, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin J-M (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0341-3

    Article  Google Scholar 

  • Qu H, Ma R, Liu D, Gao J, Wang F, Zhou Z, Wang P (2016) Environmental behavior of the chiral insecticide fipronil: enantioselective toxicity, distribution and transformation in aquatic ecosystem. Water Res 105:138–146. https://doi.org/10.1016/j.watres.2016.08.063

    Article  CAS  Google Scholar 

  • Sadaria AM, Labban CW, Steele JC, Maurer MM, Halden RU (2019) Retrospective nationwide occurrence of fipronil and its degradates in U.S. wastewater and sewage sludge from 2001–2016. Water Res 155:465–473. https://doi.org/10.1016/j.watres.2019.02.045

    Article  CAS  Google Scholar 

  • Scheel GL, Teixeira Tarley CR (2020) Simultaneous microextraction of carbendazim, fipronil and picoxystrobin in naturally and artificial occurring water bodies by water-induced supramolecular solvent and determination by HPLC-DAD. J Mol Liq 297:111897. https://doi.org/10.1016/j.molliq.2019.111897

    Article  CAS  Google Scholar 

  • Shi L, Chen L, Wan Y, Zeng H, Xia W (2020) Spatial variation of fipronil and its derivatives in tap water and ground water from China and the fate of them during drinking water treatment in Wuhan, central China. Chemosphere 251:126385. https://doi.org/10.1016/j.chemosphere.2020.126385

    Article  CAS  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34. https://doi.org/10.1007/s11356-014-3470-y

    Article  CAS  Google Scholar 

  • Sistema de informações Geográficas e geoambientais das bacias hidrográficas dos Rios Guandu, da Guarda e Guandu-mirim - SIGA GUANDU (2020) Sala de situação: Acompanhamento da Bacia. http://www.sigaguandu.org.br/siga-guandu/salaDeSituacao. Accessed 20 Aug 2020

  • Supowit SD, Sadaria AM, Reyes EJ, Halden RU (2016) Mass balance of fipronil and total toxicity of fipronil-related compounds in process streams during conventional wastewater and wetland treatment. Environ Sci Technol 50:1519–1526. https://doi.org/10.1021/acs.est.5b04516

    Article  CAS  Google Scholar 

  • Teerlink J, Hernandez J, Budd R (2017) Fipronil washoff to municipal wastewater from dogs treated with spot-on products. Sci Total Environ 599–600:960–966. https://doi.org/10.1016/j.scitotenv.2017.04.219

    Article  CAS  Google Scholar 

  • Tennekes HA (2018) Fipronil in surface water: an environmental calamity remaining under radar in the Netherlands. J Ecol Toxicol 2:5–6

    Google Scholar 

  • Testa C, Salis S, Rubattu N, Roncada P, Miniero R, Brambilla G (2019) Occurrence of fipronil in residential house dust in the presence and absence of pets: a hint for a comprehensive toxicological assessment. J Environ Sci Health B 54:441–448. https://doi.org/10.1080/03601234.2019.1607133

    Article  CAS  Google Scholar 

  • Uruguai, Ministerio De Ganadería, Agricultura y Pesca (2012) Resolución No 531/012 - Dispónense las condiciones de registro, venta y uso de insecticidas formulados en base a fipronil. MONTEVIDEO

  • USEPA (2016) Aquatic life benchmarks and ecological risk assessments for registered pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. Accessed 22 Feb 2021

  • USEPA (2018) SW-846 test method 8000D: determinative chromatographic separations. Rev 5. https://www.epa.gov/hw-sw846/sw-846-test-method-8000d-determinative-chromatographic-separations. Accessed 1 Mar 2021

  • Wan Y, Tran TM, Nguyen VT, Wang A, Wang J, Kannan K (2021) Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci Total Environ 750:141507. https://doi.org/10.1016/j.scitotenv.2020.141507

    Article  CAS  Google Scholar 

  • Weston DP, Lydy MJ (2014) Toxicity of the insecticide fipronil and its degradates to benthic macroinvertebrates of urban streams. Environ Sci Technol 48:1290–1297. https://doi.org/10.1021/es4045874

    Article  CAS  Google Scholar 

  • Wu J, Lu J, Lu H, Lin Y, Chris Wilson P (2015) Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. Sci Total Environ 518–519:139–147. https://doi.org/10.1016/j.scitotenv.2014.12.103

    Article  CAS  Google Scholar 

  • Zhang W (2018) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8:1–27

    Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Apoio à Pesquisa Tecnológica da Universidade Federal Rural do Rio de Janeiro (FAPUR) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We also thank the Brazilian National Research Council (CNPq) for the Scientific Productivity Grants of Professor Scott, F.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara P. Cid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, T.P., Bauerfeldt, G.F., Castro, R.N. et al. Determination of Fipronil and Fipronil-Sulfone in Surface Waters of the Guandu River Basin by High-Performance Liquid Chromatography with Mass Spectrometry. Bull Environ Contam Toxicol 108, 225–233 (2022). https://doi.org/10.1007/s00128-021-03369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03369-3

Keywords

Navigation