Skip to main content

Study of Potentially Toxic Elements Uptake into Organs of Quercus spp. from Copper Deposits in Slovakia, Italy and Portugal

Abstract

The article is focused on the application of Energy dispersive micro X-ray fluorescence spectroscopy as a specific method to determine the contents of potentially toxic elements and its spread in plant tissues. As a model species, Quercus spp. were selected. In order to compare the obtained results with previous research, four well-described abandoned Cu-deposits were selected for sampling: Ľubietová (Slovakia), Libiola and Caporciano (Italy), and São Domingos (Portugal). The results of micro X-ray fluorescence spectrometry confirm the irregular contamination of Quercus spp. by potentially toxic elements. The level of contamination is the highest predominantly in the root cortex, where is also the highest Ca contents (with exception of São Domingos). At Ľubietová and Caporciano, high Ni content was described in branches cortex, in branches mesoderm also Fe, Cu and Zn. At the same time, the inhibition influence of Ca was also confirmed regarding the input of these elements into plants.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abreau MM, Santos ES, Magalhaes MCF, Batista MJ (2012) São Domingos mine wastes phytostabilization using spontaneous plant species. In: 9th International Symposium on Environmental Geochemistry, pp 42–49

  2. Abreu MM, Magalhães MCF (2009) Phytostabilization of soils in mining areas. Case studies from Portugal, soil remediation. Nova Science Publishers, New York, pp 297–344

    Google Scholar 

  3. Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S (2007) Serpentine geoecology of Western North America: geology soils and vegetation. Oxford University Press, New York

    Book  Google Scholar 

  4. Álvarez-Valero AM, Pérez-López R, Matos J, Capitán MA, Nieto JM, Sáez R, Delgado J, Caballo M (2008) Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt. SW Iberian Peninsula): evidence from a chemical and mineralogical characterization. Environ Geol 55:1797–1809. https://doi.org/10.1007/s00254-007-1131-x

    CAS  Article  Google Scholar 

  5. Andráš P, Turisová I, Šlesárová A, Lichý A (2007) Influence of the dump sites on development of selected plants in the Ľubietová area (Slovakia). Carpathian J Earth Environ Sci 2:5–20

    Google Scholar 

  6. Andráš P, Lichý A, Križáni I, Rusková J, Ladomerský J, Jeleň S, Hroncová E, Matúšková L (2008) Podlipa dump-field at Ľubietová—land contaminated by heavy metals (Slovakia). Carpathian J Earth Environ Sci 3:5–18

    Google Scholar 

  7. Andráš P, Turisová I, Krnáč J, Dirner V, Voleková-Lalinská B, Buccheri G, Jeleň S (2012) Hazards of heavy metal contamination at Ľubietová Cu-deposit (Slovakia). Procedia Environ Sci 14:3–21. https://doi.org/10.1016/j.proenv.2012.03.002

    CAS  Article  Google Scholar 

  8. Andráš P, Dirner V, Kharbish S, Krnáč J (2013) Characteristics of heavy metal distribution at spoil dump-fields of Cu-deposit Ľubietová (Slovakia). Carpathian J Earth Environ Sci 8:I87-196

    Google Scholar 

  9. Andráš P, Dadová J, Dirner V (2014) Environmental study at abandoned Cu-Ag deposit Ľubietová. Technická univerzita v Košiciach, Košice

    Google Scholar 

  10. Andráš P, Turisová I, Buccheri G, Matos JX, Dirner V (2016) Comparison of heavy-metal bioaccumulation properties in Pinus sp. and Quercus sp. in selected European Cu deposits. Web Ecol 16:81–87. https://doi.org/10.5194/we-16-81-2016

    Article  Google Scholar 

  11. Andráš P, Turisová I, Matos JX, Buccheri G, Andráš P Jr, Dirner V, Kučerová R, Castro FIP, Midula P (2017) Potentially toxic elements in the representatives of the genus Pinus L. and Quercus L. at the selected Slovak. Italian and Portuguese copper deposits. Carpathian J Earth Environ Sci 12:95–107

    Google Scholar 

  12. Andráš P, Matos JX, Turisová I, Batista MJ, Kanianska R, Kharbish S (2018) The interaction of heavy metals and metalloids in the soil-plant system in the Sao Domingos mining area (Iberian Pyrite Belt. Portugal). Environ Sci Pollut Res 25:20615–20630. https://doi.org/10.1007/s11356-018-2205-x

    CAS  Article  Google Scholar 

  13. Banásová V, Ďurišová E, Nadubinská M, Gurinová E, Čiamporová M (2012) Natural vegetation, metal accumulation and tolerance inplants growing on heavy metal rich soils. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Berlin, pp 233–250

    Chapter  Google Scholar 

  14. Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546. https://doi.org/10.1016/S0176-1617(99)80295-8

    CAS  Article  Google Scholar 

  15. Buccheri G, Andráš P, Astolfi ML, Canepari S, Ciucci M, Marino A (2014a) Heavy metal contamination in water at Libiola abandoned copper mine, Italy. Romanian J Miner Deposit 87:65–70

    Google Scholar 

  16. Buccheri G, Andráš P, Andráš P Jr, Dadová J, Kupka J (2014b) Heavy metal contamination and its impact on plants at Caporciano Cu-mine (Montecatini Val di Cecina, Italy). Carpathian J Earth Environ Sci 9:73–81

    Google Scholar 

  17. Buccheri G, Andráš P, Vajda E, Midula P, Dirner V (2018a) Soil contamination by heavy metals at Libiola abandoned copper mine, Italy. Acta Montan Slovaca 23:337–345

    CAS  Google Scholar 

  18. Buccheri G, Dadová J, Kučerová R (2018b) Contamination of the environment at abandoned Cu-mines Libiola and Caporciano. Technická univerzita Košice, Košice

    Google Scholar 

  19. Crang R, Lyons-Sobaski S, Wise R (2018) Parenchyma, collenchyma, and sclerenchyma. In: Crang R, Lyons-Sobaski S (eds) Plant anatomy. Springer, Cham, pp 181–213

    Chapter  Google Scholar 

  20. De Michele V, Ostroman A (1987) Mineral processing at Montecatini deposit from 1888 to 1938. Museo Civico Storia Naturale, Milano, pp 1–38

    Google Scholar 

  21. Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerance and trace elements growing on the degraded soils Portugal: environmental implications. Environ Int 30:65–72. https://doi.org/10.1016/S0160-4120(03)00149-1

    CAS  Article  Google Scholar 

  22. Frey B, Keller C, Zierhold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687. https://doi.org/10.1046/j.1365-3040.2000.00590.x

    CAS  Article  Google Scholar 

  23. Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis. Magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368:5–21. https://doi.org/10.1007/s11104-012-1567-y

    CAS  Article  Google Scholar 

  24. Klemm DD, Wagner J (1982) Copper deposit in ophiolites of southern Tuscany. Ofioliti 7:331–336

    CAS  Google Scholar 

  25. Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311. https://doi.org/10.1104/pp.119.1.305

    Article  Google Scholar 

  26. Lotti B (1884) Miniera di Montecatini in Val di Cecina. Boll R Comit Geol Italiano 15:359–394

    Google Scholar 

  27. Marques L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:289–295. https://doi.org/10.1111/j.1469-8137.2004.01178.x

    CAS  Article  Google Scholar 

  28. Matos JX, Pereira Z, Oliveira V, Oliveira JT (2006) The geological setting of the São Domingos pyrite orebody. Iberian Pyrite Belt. In: VII Cong. Nac. Geologia. Estremoz, Un. Évora, pp. 283–286

  29. Mazzuoli L (1883) Appunti geologici sul giacimento cuprifero di Montecatini. R Comitato Geol D’italia Boll 9:44–52

    Google Scholar 

  30. Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175. https://doi.org/10.1007/s11356-008-0079-z

    CAS  Article  Google Scholar 

  31. Midula P, Dadová J, Buccheri G, Krnáč J, Kováčová Ferdinandová L (2017a) Biokoncentrácia potenciálne toxických prvkov do rastlín na haldovom poli Podlipa v Ľubietovej. In: Jurkovič Ľ, Slaninka I, Ďurža O (eds) Geochémia. Zborník vedeckých príspevkov ŠGÚDŠ, Bratislava, pp 108–109

    Google Scholar 

  32. Midula P, Wiche O, Andráš P, Wiese P (2017b) Concentration and bioavailability of toxic trace elements, germanium and rare earth elements in contaminated areas of the Davidschacht dump-field in Freiberg (Saxony). Freiberg Ecol 2:101–112

    Google Scholar 

  33. Mwegoha WJS (2008) The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges. J Sustain Dev 10:140–156

    Google Scholar 

  34. Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability—the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113. https://doi.org/10.1023/A:1004865811529

    CAS  Article  Google Scholar 

  35. Polák M, Filo I, Havrila M et al (2003) Explanations to the geological map Starohorské Mts, Čierťaže and of Northern part of Zvolen fold. ŠGÚDŠ, Bratislava

    Google Scholar 

  36. Sáez R, Pascual E, Toscano M, Almodóvar GR (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Miner Deposita 34:549–570. https://doi.org/10.1007/s001260050220

    Article  Google Scholar 

  37. Shaheen R, Arefin MT, Mahmud R (2007) Phytoremediation of boron contaminated soils by naturally grown weeds. J Soil Nat 1:1–6

    Google Scholar 

  38. Simson CR, Corey RB, Sumner ME (1979) Effect of varying Ca: Mg ratios on yield and composition of corn (Zea mays) and alfalfa (Medicago sativa). Commun Soil Sci Plant Anal 10:153–162. https://doi.org/10.1080/00103627909366885

    CAS  Article  Google Scholar 

  39. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101. https://doi.org/10.2307/1412159

    Article  Google Scholar 

  40. Vaculík M (2018) Základné princípy fytoremediácií. Univerzita Komenského, Bratislava

    Google Scholar 

  41. Wiche O, Zertani V, Hentschel W, Achtziger R, Midula P (2017) Germanium and rare earth elements in topsoil and soil-grown plants in different land use types in the mining area of Freiberg (Saxony). J Geochem Explor 175:120–129

    CAS  Article  Google Scholar 

  42. Zaccarini F, Garuti G (2008) Mineralogy and chemical composition of VMS deposits of northern Apennine ophiolites, Italy: evidence for the influence of country rock type on ore composition. Miner Petrol 94:61. https://doi.org/10.1007/s00710-008-0010-9

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant scheme No. 1/0291/19 of the Grant Agency VEGA (Vedecká grantová agentúra MŠVVaŠ SR a SAV).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavol Midula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andráš, P., Midula, P., Milovská, S. et al. Study of Potentially Toxic Elements Uptake into Organs of Quercus spp. from Copper Deposits in Slovakia, Italy and Portugal. Bull Environ Contam Toxicol 107, 312–319 (2021). https://doi.org/10.1007/s00128-021-03323-3

Download citation

Keywords

  • Micro X-ray Fluorescence Spectrometry
  • Contamination
  • Plant organs
  • Plant tissues
  • Ca-inhibition influence