Skip to main content

Growth Responses and Accumulation of Vanadium in Alfalfa, Milkvetch Root, and Swamp Morning Glory and Their Potential in Phytoremediation

Abstract

Pot experiments with alfalfa, milkvetch root and swamp morning glory were conducted to elucidate the effect of soil vanadium (V) on plant growth and to evaluate their phytoremediation potential under V(V) exposure. Based on biomass analysis, swamp morning glory showed higher tolerance than alfalfa and milkvetch root in response to different soil V(V) levels. The accumulation of V in plants increased with the increasing soil V and the V concentration in roots was 1.95–4.31 times that in shoots. After planting, soil total V, V(V), bioavailable V and water-soluble V all reduced, and the decreases in bioavailable V and V(V) showed significant. The decreased percentage of V(V) in total V in soils demonstrated that the planting process may stimulate the mechanism of V(V) reduction to V(IV). Therefore, the three tested plants, particularly swamp morning glory can be promising phytostabilizers applied to V phytoremediation practices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12(7):1365–1377

    CAS  Article  Google Scholar 

  2. Aihemaiti A, Jiang J, Li D, Liu N, Yang M, Meng Y, Zou Q (2018) The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. J Environ Manag 222(15):216–226

    CAS  Article  Google Scholar 

  3. Aihemaiti A, Gao Y, Meng Y, Chen X, Liu J, Xiang H, Xu Y, Jiang J (2020) Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Sci Total Environ 712:135637

    CAS  Article  Google Scholar 

  4. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    CAS  Article  Google Scholar 

  5. Bai G (2012) Study of determination of trace vanadium(V) in soil by specteophotometric-1-(2-pyridineazo)-2-naphthol-hydrogen peroxide-sodium dodecyl benzene sulfonate colorimetric method. Dissertation, Shandong Normal University

  6. Bremner JM (1996) Nitrogen-total. In: Bigham JM (ed) Methods of soil analysis: part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, pp 1085–1121

    Google Scholar 

  7. Cao X, Diao M, Zhang B, Liu H, Wang S, Yang M (2017) Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. Chemosphere 183:9–17

    CAS  Article  Google Scholar 

  8. Chen T, Li TQ, Yang JY (2016) Damage suffered by swamp morning glory (Ipomoea aquatica Forsk) exposed to vanadium (V). Environ Toxicol Chem 35(3):695–701

    CAS  Article  Google Scholar 

  9. Chen Y, Wang Y, Yeh KC (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72

    CAS  Article  Google Scholar 

  10. Chen L, Liu J, Hu W, Gao J, Yang J (2020) Vanadium in soil-plant system: source, fate, toxicity, and bioremediation. J Hazard Mater 405:124200

    Article  Google Scholar 

  11. Cui H, Li H, Zhang S, Yi Q, Zhou J, Fang G, Zhou J (2020) Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere 242:125252

    CAS  Article  Google Scholar 

  12. Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118(3):419–426

    CAS  Article  Google Scholar 

  13. Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M (2018) The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 103:1018–1027

    CAS  Article  Google Scholar 

  14. Gan C, Chen T, Yang J (2020) Remediation of vanadium contaminated soil by alfalfa (Medicago sativa L.) combined with vanadium-resistant bacterial strain. Environ Technol Innov 20:101090

    CAS  Article  Google Scholar 

  15. Gan C, Liu M, Lu J, Yang J (2020b) Adsorption and desorption characteristics of vanadium (V) on silica. Water Air Soil Pollut 231:10

    CAS  Article  Google Scholar 

  16. He H, Dong Z, Pang J, Wu G, Zheng J, Zhang X (2018) Phytoextraction of rhenium by lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) from alkaline soils amended with coal fly ash. Sci Total Environ 630:570–577

    CAS  Article  Google Scholar 

  17. Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu S (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    CAS  Article  Google Scholar 

  18. Jin J, Wang M, Lu W, Zhang L, Jiang Q, Jin Y, Lu K, Sun S, Cao Q, Wang Y, Xiao M (2019) Effect of plants and their root exudate on bacterial activities during rhizobacterium–plant remediation of phenol from water. Environ Int 127:114–124

    CAS  Article  Google Scholar 

  19. Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S (2021) Ornamental plants for the phytoremediation of heavy metals: present knowledge and future perspectives. Environ Res 195:110780

    CAS  Article  Google Scholar 

  20. Lu R (1999) Agricultural chemical analysis method of soil. Chinese Agricultural Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  21. Mandegary A, Saeedi A, Eftekhari A, Montazeri V, Sharif E (2013) Hepatoprotective effect of silyamarin in individuals chronically exposed to hydrogen sulfide; modulating influence of TNF-α cytokine genetic polymorphism. DARU J Pharm Sci 21(1):28

    CAS  Article  Google Scholar 

  22. Naeem A, Westerhoff P, Mustafa S (2007) Vanadium removal by metal (hydr)oxide adsorbents. Water Res 41(7):1596–1602

    CAS  Article  Google Scholar 

  23. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    CAS  Article  Google Scholar 

  24. Rehman MZ, Rizwan M, Ghafoor A, Naeem A, Ali S, Sabir M, Qayyum MF (2015) Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ Sci Pollut Res 22:16897–16906

    CAS  Article  Google Scholar 

  25. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42(6):785–797

    CAS  Article  Google Scholar 

  26. Sumiahadi A, Acar R (2018) A review of phytoremediation technology: heavy metals uptake by plants. IOP Conf Ser Earth Environ Sci 142:012023

    Article  Google Scholar 

  27. Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, Luo Y (2016) Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Int J Phytorem 18(2):141–149

    CAS  Article  Google Scholar 

  28. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    CAS  Article  Google Scholar 

  29. Windom HL, Schropp SJ, Calder FD, Ryan JD, Smith RG, Burney JC et al (1989) Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environ Sci Technol 23(3):314–320

    CAS  Article  Google Scholar 

  30. Wu Z, Yang J, Zhang Y, Wang C, Guo S, Yu Y (2021) Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremediation. Ecotoxicol Environ Saf 207:111297

    CAS  Article  Google Scholar 

  31. Yu Y, Li J, Liao Y, Yang J (2020) Effectiveness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. J Clean Prod 277:123506

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China [42077346] and the Strategic Cooperation Project Between Sichuan University and Yibin Municipal Government [2019CDYB-19].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-yan Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, Cd., Chen, T. & Yang, Jy. Growth Responses and Accumulation of Vanadium in Alfalfa, Milkvetch Root, and Swamp Morning Glory and Their Potential in Phytoremediation. Bull Environ Contam Toxicol 107, 559–564 (2021). https://doi.org/10.1007/s00128-021-03309-1

Download citation

Keywords

  • Vanadium
  • Phytoremediation
  • Bioavailability
  • Plant growth
  • Accumulation