Skip to main content

Characterization, Sources and Excessive Cancer Risk of PM2.5-Bound Polycyclic Aromatic Hydrocarbons in Different Green Spaces in Lin’an, Hangzhou, China

Abstract

PM2.5 samples were collected from residential, commercial, plaza and public green spaces in Lin’an, Hangzhou, in spring (March and April) and winter (February and December) in 2017. PAHs were detected by gas chromatography-mass spectrometry (GC-MS), and their sources were identified using the diagnostic ratio (DR) and principal component analysis-multiple linear regression (PCA-MLR). The average PAH concentration in winter was 1.3 times that in spring (p < 0.01). The PAH concentrations in the green spaces decreased as commercial > residential > plaza > public green space (p < 0.05). The sources of PAHs were vehicle emissions and coal combustion pollution transported by northern Chinese air masses. Slightly higher excessive cancer risks were determined in the commercial and residential green spaces than in the plaza and public green spaces. Green coverage, pedestrian volume, traffic flow and building density greatly influenced the decrease in the PAH concentration in the green spaces. Among the 4 types of green spaces, public green space had the most ecological benefits and should be fully utilized in urban green space planning to improve public health in urban spaces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abhijith KV, Kumar P, Gallagher J, McNabola A, Baldauf R, Pilla F, Broderick B, Sabatino DS, Pulvirenti B (2017) Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments: a review. Atmos Environ 162:71–86. https://doi.org/10.1016/j.atmosenv.2017.05.014

    CAS  Article  Google Scholar 

  2. Albuquerque M, Coutinho M, Borrego C (2016) Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Sci Total Environ 543:439–448. https://doi.org/10.1016/j.scitotenv.2015.11.064

    CAS  Article  Google Scholar 

  3. Bai HZ, Zhang HJ (2016) Characteristics, sources, and cytotoxicity of atmospheric polycyclic aromatic hydrocarbons in urban roadside areas of Hangzhou, China. J Environ Sci Health Part A 52:303–312. https://doi.org/10.1080/10934529.2016.1258862

    CAS  Article  Google Scholar 

  4. Bao Z, Feng Y-C, Jiao L, Hong S-M, Liu W-G (2010) Characterization and source apportionment of PM2.5 and PM10 in Hangzhou. Environ Monit China 26(2):44–48. https://doi.org/10.19316/j.issn.1002-6002.2010.02.012(In Chinese)

    Article  Google Scholar 

  5. Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Yohannes YB, Baidoo E, Mizukawa H, Ishizuka M (2015) Levels, potential sources and human health risk of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Kumasi, Ghana. Environ Sci Pollut Res 22:9658–9667. https://doi.org/10.1007/s11356-014-4022-1

    CAS  Article  Google Scholar 

  6. Butt EW, Turnock ST, Rigby R, Reddington CL, Yoshioka M, Johnson JS, Regayre LA, Pringle KJ, Mann GW, Spracklen DV (2017) Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ Res Lett 12:104017. https://doi.org/10.1088/1748-9326/aa87be

    CAS  Article  Google Scholar 

  7. Callén MS, López JM, Iturmendi A, Mastral AM (2013) Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environ Pollut 183:166–174. https://doi.org/10.1016/j.envpol.2012.11.009

    CAS  Article  Google Scholar 

  8. Chang JR, Shen JN, Tao J, Li N, Xu CY, Li YP, Liu Z, Wang Q (2019) The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. Sci Total Environ 688:1413–1421. https://doi.org/10.1016/j.scitotenv.2019.06.149

    CAS  Article  Google Scholar 

  9. Chen J-Y, Liu B-C, Han X-Q, Zhou Q-H (2017a) Size distribution and cell toxicity of polycyclic aromatic hydrocarbons in fine atmospheric matter during winter and spring in Hangzhou. Environ Pollut Control 39(2):113–116, 121. (In Chinese)

  10. Chen Y, Li XH, Zhu TL, Han YJ, Lv D (2017b) PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: concentration, source and health risk assessment. Sci Total Environ 586:255–264. https://doi.org/10.1016/j.scitotenv.2017.01.214

    CAS  Article  Google Scholar 

  11. Chen YC, Chiang HC, Hsu CY, Yang TT, Lin TY, Chen MJ, Chen NT, Wu YS (2016) Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: seasonal variation, source apportionment and cancer risk assessment. Environ Pollut 218:372–382. https://doi.org/10.1016/j.envpol.2016.07.016

    CAS  Article  Google Scholar 

  12. Desalme D, Binet P, Chiapusio G (2013) Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. Environ Sci Technol 47:3967–3981. https://doi.org/10.1021/es304964b

    CAS  Article  Google Scholar 

  13. Dias APL, Rinaldi MCS, Domingos M (2016) Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil). Sci Total Environ 544:175–184. https://doi.org/10.1016/j.scitotenv.2015.11.092

    CAS  Article  Google Scholar 

  14. Fan XL, Chen Z, Liang LC, Qiu GL (2018) Atmospheric PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Guiyang City, southwest China: concentration, seasonal variation, sources and health risk assessment. Arch Environ Contam Toxicol 76:102–113. https://doi.org/10.1007/s00244-018-0563-5

    CAS  Article  Google Scholar 

  15. Gao B, Guo H, Wang XM, Zhao XY, Ling ZH, Zhang Z, Liu TY (2012) Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. J Hazard Mater 239–240:78–87. https://doi.org/10.1016/j.jhazmat.2012.07.068

    CAS  Article  Google Scholar 

  16. Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, Tahir NM (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos Environ 86:16–27. https://doi.org/10.1016/j.atmosenv.2013.12.019

    CAS  Article  Google Scholar 

  17. Lee YJ, Kim YP (2007) Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity. Atmos Chem Phys 7:1479–1506

    Article  Google Scholar 

  18. Liu GQ, Tong YP, Luong JHT, Zhang H, Sun HB (2010) A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, south China. Environ Monit Assess 163:599–606. https://doi.org/10.1007/s10661-009-0862-4

    CAS  Article  Google Scholar 

  19. Liu Y, Liu LB, Lin JM, Tang N, Hayakawa K (2006) Distribution and characterization of polycyclic aromatic hydrocarbon compounds in airborne particulates of East Asia. China Particuol 4(6):283–292

    CAS  Article  Google Scholar 

  20. Lodovici M, Venturini M, Marini E, Grechi D, Dolara P (2003) Polycyclic aromatic hydrocarbons air levels in Florence, Italy, and their correlation with other air pollutants. Chemosphere 50:377–382. https://doi.org/10.1016/S0045-6535(02)00404-6

    CAS  Article  Google Scholar 

  21. Longoria-Rodríguez FE, González LT, Mendoza A, Leyva-Porras C, Arizpe-Zapata A, Esneider-Alcalá M, Acuña-Askar K, Gaspar-Ramirez O, López-Ayala O, Alfaro-Barbosa JM, Kharissova OV (2020) Environmental levels, sources, and cancer risk assessment of PAHs associated with PM2.5 and TSP in Monterrey Metropolitan Area. Arch Environ Contam Toxicol 78:377–391. https://doi.org/10.1007/s00244-019-00701-1

    CAS  Article  Google Scholar 

  22. Lu H, Wang SS, Wu ZL, Yao SL, Han JY, Tang XJ, Jiang BQ (2017) Variations of polycyclic aromatic hydrocarbons in ambient air during haze and non-haze episodes in warm seasons in Hangzhou, China. Environ Sci Pollut Res 24:135–145. https://doi.org/10.1007/s11356-016-7303-z

    CAS  Article  Google Scholar 

  23. Ma LX, Li B, Liu YP, Sun XZ, Fu DL, Sun SJ, Thapa S, Geng JL, Qi H, Zhang AP, Tian CG (2020) Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in northern China. J Clean Prod 264:673. https://doi.org/10.1016/j.jclepro.2020.121673

    CAS  Article  Google Scholar 

  24. Mehmood T, Zhu TL, Ahmad I, Li XH (2020) Ambient PM2.5 and PM10 bound PAHs in Islamabad, Pakistan: concentration, source and health risk assessment. Chemosphere 257:127187. https://doi.org/10.1016/j.chemosphere.2020.127187

    CAS  Article  Google Scholar 

  25. Mihankhah T, Saeedi M, Karbassi A (2020) Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicol Environ Saf 187:109838. https://doi.org/10.1016/j.ecoenv.2019.109838

    CAS  Article  Google Scholar 

  26. Ministry of Ecology and Environment of the People’s Republic of China (2012) GB3095-2012. Ambient air quality standards. China Environmental Science Press, Beijing

  27. Ministry of Environmental Protection of the People’s Republic of China (2013) HJ 646-2013. Ambient air and stationary source emissions-determination of gas and particle-phase polycyclic aromatic hydrocarbons with gas chromatography/mass spectrometry. China Environmental Science Press, Beijing

  28. Ministry of Environmental Protection of the People’s Republic of China (2017) HJ 194-2017. Technical specifications on manual methods for ambient air quality monitoring. China Environmental Science Press, Beijing

  29. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2017) CJJ/T 85-2017. Classification standard of urban green space. China Building Industry Press, Beijing

  30. Sosa BS, Porta A, Lerner JEC, Noriega RB, Massolo L (2017) Human health risk due to variations in PM10-PM2.5 and associated PAHs levels. Atmos Environ 160:27–35. https://doi.org/10.1016/j.atmosenv.2017.04.004

    CAS  Article  Google Scholar 

  31. Terzaghi E, Zacchello G, Scacchi M, Raspa G, Jones KC, Cerabolini B, Guardo AD (2015) Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest. Sci Total Environ 505:329–337. https://doi.org/10.1016/j.scitotenv.2014.09.108

    CAS  Article  Google Scholar 

  32. Tian FL, Chen JW, Qiao XL, Wang Z, Yang P, Wang DG, Ge LK (2009) Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: factor analysis with non-negative constraints combined with local source fingerprints. Atmos Environ 43:2747–2753. https://doi.org/10.1016/j.atmosenv.2009.02.037

    CAS  Article  Google Scholar 

  33. Tian L, Yin S, Ma YG, Kang HZ, Zhang XY, Tan HX, Meng HY, Liu CJ (2019) Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: morphological characteristics have the greatest impact. Sci Total Environ 652:1149–1155. https://doi.org/10.1016/j.scitotenv.2018.10.357

    CAS  Article  Google Scholar 

  34. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. https://doi.org/10.1016/j.envpol.2011.10.025

    CAS  Article  Google Scholar 

  35. Wang J, Hu ZM, Chen YY, Chen ZL, Xu SY (2013) Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos Environ 68:221–229. https://doi.org/10.1016/j.atmosenv.2012.10.070

    CAS  Article  Google Scholar 

  36. Wang JZ, Cao JJ, Dong ZB, Guinot B, Gao ML, Huang RJ, Han YM, Huang Y, Ho SSH, Shen ZX (2017) Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: the effects of suburban scattered emissions in winter. Environ Pollut 231:1330–1343. https://doi.org/10.1016/j.envpol.2017.08.106

    CAS  Article  Google Scholar 

  37. Wu SP, Tao S, Liu WX (2006) Particle size distributions of polycyclic aromatic hydrocarbons in rural and urban atmosphere of Tianjin, China. Chemosphere 62:357–367. https://doi.org/10.1016/j.chemosphere.2005.04.101

    CAS  Article  Google Scholar 

  38. Xing Y, Brimblecombe P (2020) Trees and parks as “the lungs of cities”. Urban For Urban Green 48:126552. https://doi.org/10.1016/j.ufug.2019.126552

    Article  Google Scholar 

  39. Zhu LZ, Lu H, Chen SG, Amagai T (2009) Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. J Hazard Mater 162:1165–1170. https://doi.org/10.1016/j.jhazmat.2008.05.150

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 51978627). We are grateful to Dr. Fengbin Sun for his suggestions regarding this research. We also thank Mr. Liu Yang from the Zhejiang Forestry Research Institute for his technical guidance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Shao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Zhang, Y., Lou, Y. et al. Characterization, Sources and Excessive Cancer Risk of PM2.5-Bound Polycyclic Aromatic Hydrocarbons in Different Green Spaces in Lin’an, Hangzhou, China. Bull Environ Contam Toxicol 107, 519–529 (2021). https://doi.org/10.1007/s00128-021-03304-6

Download citation

Keywords

  • Urban green spaces
  • PM2.5
  • PAHs
  • Concentration dynamics
  • Sources