Skip to main content

Effects of Copper Oxide Nanoparticles on Immune and Metabolic Parameters of Galleria mellonella L

Abstract

In this study, the effects of dietary CuO nanoparticles (NPs) on metabolic enzyme activity, biochemical parameters, and total (THC) and differential hemocyte counts (DHC) were determined in Galleria mellonella larvae. Using concentrations of 10, 100, 1000 mg/L and the LC10 and LC30 levels of CuO NPs, we determined that the NPs negatively impacted metabolic enzyme activity and biochemical parameters in larval hemolymph. Compared with the control, the greatest increase in THC was observed in larvae fed on diets with 100 mg L−1 of CuO NPs. Plasmatocytes and granulocytes were among the most numerous hemocytes in all treatments. These results suggest that dietary CuO NPs effects the metabolic metabolism and immune system of G. mellonella and provide indirect information regarding the toxic effects of CuO NPs in mammalian immune system given similarities between mammalian blood cells and insect hemocytes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahamed M, Siddiqui M, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583

    CAS  Article  Google Scholar 

  2. Aslan N, Büyükgüzel E, Büyükgüzel K (2019) Oxidative effects of gemifloxacin on some biological traits of Drosophila melanogaster (Diptera: Drosophilidae). Environ Entomol 48(3):667–673. https://doi.org/10.1093/ee/nvz039

    CAS  Article  Google Scholar 

  3. Bronksill JF (1961) A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J Lep Soc 15:102–104

    Google Scholar 

  4. Browne N, Heelan M, Kavanagh K (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4(7):597–603. https://doi.org/10.4161/viru.25906

    Article  Google Scholar 

  5. Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, Bérard JB, Risso C, Guibbolini M, Roméo M, Reip P, Valsami-Jones E, Mouneyrac C (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–174

    CAS  Article  Google Scholar 

  6. Çelik C, Büyükgüzel K, Büyükgüzel E (2019) The effects of oxyclozanide on survival, development and total protein of Galleria mellonella L (Lepidoptera: Pyralidae). J Entomol Res Soc 21(1):95–108

    Google Scholar 

  7. Dowling AP (2004) Development of nanotechnologies. Mater Today 7:30–35

    Article  Google Scholar 

  8. Er A, Uçkan F, Rivers DB, Ergın E, Sak O (2010) Effects of parasitization and envenomation by the endoparasitic wasp Pimpla turionellae (Hymenoptera: Ichneumonidae) on hemocyte numbers, morphology, and viability of its host Galleria mellonella (Lepidoptera: Pyralidae). Ann Entomol Soc Am 103(2):273–282. https://doi.org/10.1603/AN09065

    Article  Google Scholar 

  9. Er A, Uçkan F, Rivers DB, Sak O (2011) Cytotoxic effects of parasitism and application of venom from the endoparasitoid Pimpla turionellae on hemocytes of the host Galleria mellonella. J App Entomol 135:225–236. https://doi.org/10.1111/j.1439-0418.2010.01528.x

    Article  Google Scholar 

  10. Erdem M, Küçük C, Büyükgüzel E, Büyükgüzel K (2016) Ingestion of the anti-bacterial agent, gemifloxacin mesylate, leads to increased gst activity and peroxidation products in hemolymph of Galleria mellonella l. (Lepidoptera: Pyralidae). Arch Insect Biochem Physiol 93(4):202–209. https://doi.org/10.1002/arch.21352

    CAS  Article  Google Scholar 

  11. Etebari K, Matindoost L (2004) Effects of hypervitaminosis of vitamin B 3 on silkworm biology. J Biosci 29(4):417–422. https://doi.org/10.1007/BF02712113

    CAS  Article  Google Scholar 

  12. Etebari K, Bizhannia AR, Sorati R, Matindoost L (2007) Biochemical changes in haemolymph of silkworm larvae due to pyriproxyfen residue. Pestic Biochem Physiol 88(1):14–19. https://doi.org/10.1016/j.pestbp.2006.08.005

    CAS  Article  Google Scholar 

  13. Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol in Vitro 23:1365–1371

    CAS  Article  Google Scholar 

  14. Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  15. Foret MK, Do Carmo S, Lincoln R, Greene LE, Zhang W, Cuello AC, Cosa G (2019) Effect of antioxidant supplements on lipid peroxidation levels in primary cortical neuron cultures. Free Radical Biol Med 130:471–477. https://doi.org/10.1016/j.freeradbiomed.2018.11.019

    CAS  Article  Google Scholar 

  16. Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10:5–23. https://doi.org/10.1023/A:1008939520263

    CAS  Article  Google Scholar 

  17. Ghasemi V, Yazdi AK, Tavallaie FZ, Sendi JJ (2014) Effect of essential oils from Callistemon viminalis and Ferula gummosa on toxicity and on the hemocyte profile of Ephestia kuehniella (Lep.: Pyralidae). Arch Phytopathol Plant 47(3):268–278. https://doi.org/10.1080/03235408.2013.808856

    CAS  Article  Google Scholar 

  18. Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362. https://doi.org/10.1021/es200955s

    CAS  Article  Google Scholar 

  19. Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415. https://doi.org/10.1093/toxsci/kfn256

    CAS  Article  Google Scholar 

  20. Gwokyalya R, Altuntaş H (2019) Boric acid-induced immunotoxicity and genotoxicity in model insect Galleria mellonella L. (Lepidoptera: Pyralidae). Arch Insect Biochem Physiol 101(4):e21588. https://doi.org/10.1002/arch.21588

    CAS  Article  Google Scholar 

  21. Hakkak R, Gauss CH, Bell A, Korourian S (2018) Short-term soy protein isolate feeding prevents liver steatosis and reduces serum alt and ast levels in obese female zucker rats. Biomedicines 6(2):55–66. https://doi.org/10.3390/biomedicines6020055

    CAS  Article  Google Scholar 

  22. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316. https://doi.org/10.1016/j.chemosphere.2007.11.047

    CAS  Article  Google Scholar 

  23. Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourgier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res 45:179–190. https://doi.org/10.1016/j.watres.2010.08.026

    CAS  Article  Google Scholar 

  24. Hirayama C, Nakamura M (2002) Regulation of glutamine metabolism during the development of Bombyx mori larvae. Biochim Biophys Acta 1571(2):131–137. https://doi.org/10.1016/S0304-4165(02)00207-6

    CAS  Article  Google Scholar 

  25. İçen E, Armutçu F, Büyükgüzel K, Gürel A (2005) Biochemical stress indicators of greater wax moth exposure to organophosphorus insecticides. J Econ Entomol 98(2):358–366. https://doi.org/10.1603/0022-0493-98.2.358

    Article  Google Scholar 

  26. Jones JC (1962) Current concepts concerning insect hemocytes. Am Zool 2:209–246

    Article  Google Scholar 

  27. Jones JC (1967) Changes in the hemocyte picture of Galleria mellonella L. Biol Bull (woods Hole) 132:1211–1221

    Google Scholar 

  28. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414. https://doi.org/10.1016/j.scitotenv.2008.06.042

    CAS  Article  Google Scholar 

  29. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    CAS  Article  Google Scholar 

  30. Kastamonuluoğlu S, Büyükgüzel K, Büyükgüzel E (2020) The use of dietary antifungal agent terbinafine in artificial diet and its effects on some biological and biochemical parameters of the model organism Galleria mellonella (Lepidoptera: Pyralidae). J Econ Entomol 113(3):1110–1117. https://doi.org/10.1093/jee/toaa039

    CAS  Article  Google Scholar 

  31. Keskin A, Öztürk Ş, Körükçü M (2019) Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods. Ecotoxicology 28:801–808. https://doi.org/10.1007/s10646-019-02078-2

    CAS  Article  Google Scholar 

  32. Kumar D, Kumari S, Verma D (2019) Evaluation of Aspergillus niger as a Biocontrol Agent in the Insect Pest Management of Red Cotton Bug, Dysdercus koenigii (Heteroptera: Pyrrhocoridae). J Sci Res 11(2):235–247. https://doi.org/10.3329/jsr.v11i2.39286

    CAS  Article  Google Scholar 

  33. Kurt D, Kayış T (2015) Effects of the pyrethroid insecticide delta-methrin on the hemocytes of the Galleria mellonella. Turk J Zool 39:452–457. https://doi.org/10.3906/zoo-1405

    CAS  Article  Google Scholar 

  34. Lavine MD, Strand MR (2002) Insect hemocytes and their role in cellular immune responses. Insect Biochem Mol Biol 32:1237–1242

    Article  Google Scholar 

  35. Li KL, Zhang YH, Xing R, Zhou YF, Chen XD, Wang H et al (2017) Different toxicity of cadmium telluride, silicon, and carbon nanomaterials against hemocytes in silkworm, Bombyx mori. RSC Adv 7:50317–50327. https://doi.org/10.1039/c7ra09622d

    CAS  Article  Google Scholar 

  36. Maria VL, Bebianno MJ (2011) Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp Biochem Physiol C Toxicol Pharmacol 154(1):56–63. https://doi.org/10.1016/j.cbpc.2011.02.004

    CAS  Article  Google Scholar 

  37. Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R (2020) Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their efects on immuno-competent cells. Sci Rep 10:1617. https://doi.org/10.1038/s41598-020-58526-1

    CAS  Article  Google Scholar 

  38. Mirhaghparast SK, Zibaee A, Sendi JJ, Hoda H, Dina MH (2015) Immune and metabolic responses of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to an insect growth regulator, hexaflumuron. Pestic Biochem Physiol 125:69–77. https://doi.org/10.1016/j.pestbp.2015.05.007

    CAS  Article  Google Scholar 

  39. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. https://doi.org/10.1016/j.envpol.2007.06.006

    CAS  Article  Google Scholar 

  40. Sertçelik M, Sugeçti S, Büyükgüzel E, Necefoğlu H, Büyükgüze K (2018) Diaquabis (N, N-dietilnikotinamid-N1) bis (4-formilbenzoato-O) kobalt (II) kompleksinin model organizma Galleria mellonella l (Lepidoptera: Pyralidae) üzerindeki toksikolojik ve fizyolojik etkileri. Karaelmas Fen Ve Müh. Derg 8(1):359–436. https://doi.org/10.7212/2Fzkufbd.v8i1.1207

    Article  Google Scholar 

  41. Sezer B, Ozalp P (2011) The effects of azadirachtin on the percentage of glycogen contents in larvae of Galleria mellonella. Ecology 20(81):67–72. https://doi.org/10.5053/ekoloji.2011.8110

    CAS  Article  Google Scholar 

  42. Sharma A, Kumar V, Thukral AK, Bhardwaj R (2016) Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Ind J Plant Physiol 21(1):70–75. https://doi.org/10.1007/s40502-016-0203-x

    CAS  Article  Google Scholar 

  43. Shen J, Chen Z, Zhuang Q, Fan M, Ding T, Lu H, He X (2016) Prognostic value of serum lactate dehydrogenase in renal cell carcinoma: a systematic review and meta-analysis. PLoS One 11(11):e0166482. https://doi.org/10.1371/journal.pone.0166482

    CAS  Article  Google Scholar 

  44. Skitek M, Kranjec I, Jerin A (2014) Glycogen phosphorylase isoenzyme BB, creatine kinase isoenzyme MB and troponin I for monitoring patients with percutaneous coronary intervention-a pilot study. Med Glas (zenica) 11(1):13–18

    Google Scholar 

  45. SPSS (1997) User’s manual, version 10. SPSS, Chicago, IL

    Google Scholar 

  46. Studer AM, Limbach LK, Duc LV, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174

    CAS  Article  Google Scholar 

  47. Sugeçti S, Büyükgüzel K (2018) Effects of Oxfendazole on Metabolic Enzymes in Hemolymph of Galleria mellonella L (Lepidoptera: Pyralidae) larvae reared on artificial diet. Karaelmas Fen Ve Müh. Derg 8(2):590–594. https://doi.org/10.7212/2Fzkufbd.v8i2.1380

    Article  Google Scholar 

  48. Sugeçti S, Büyükgüzel K and Büyükgüzel E (2016) Laboratory assays of the effects of oxfendazole on biological parameters of Galleria mellonella (Lepidoptera: Pyralidae). J Entomol Sci 51(2): 129–137. https://doi.org/https://doi.org/10.18474/JES15-36.1

  49. Sun HX, Dang Z, Xia Q, Tang WC, Zhang GR (2011) The effect of dietary nickel on the immune responses of Spodoptera litura Fabricius larvae. J Insect Physiol 57:954–961. https://doi.org/10.1016/j.jinsphys.2011.04.008

    CAS  Article  Google Scholar 

  50. Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216(3):503–509. https://doi.org/10.1016/j.chroma.2008.09.008

    CAS  Article  Google Scholar 

  51. Tuncsoy Sezer B, Tuncsoy M, Gomes T, Sousa V, Teixeira MR, Bebianno MJ, Ozalp P (2019) Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L. Bull Environ Contam Toxicol 102(3):341–346. https://doi.org/10.1007/s00128-018-2529-8

    CAS  Article  Google Scholar 

  52. Wand ME, McCowen JW, Nugent PG, Sutton JM (2013) Complex interactions of Klebsiella pneumoniae with the host immune system in a Galleria mellonella infection model. J Med Microbiol 62(12):1790–1798. https://doi.org/10.1099/jmm.0.063032-0

    Article  Google Scholar 

  53. Wang AH, Wu JC, Yu YS, Liu JL, Yue JF, Wang MY (2005) Selective insecticide induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyrelidae). J Econ Entomol 98(4):1144–1149. https://doi.org/10.1603/0022-0493-98.4.1144

    CAS  Article  Google Scholar 

  54. Xia Q, Sun H, Hu X (2005) Apoptosis of Spodoptera litura larval hemocytes induced by heavy metal zinc. Chin Sci Bull 50:2856–2860. https://doi.org/10.1007/BF02899656

    CAS  Article  Google Scholar 

  55. Zhu Q, He Y, Yao J, Liu Y, Tao L, Huang Q (2012) Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm Spodoptera Litura. J Insect Sci 12:27. https://doi.org/10.1673/031.012.2701

    CAS  Article  Google Scholar 

  56. Zibaee I, Sendi JJ, Talaei-Hassanloei R (2011) Artemisia annua L (Asterasea) changes some biochemical compounds in the hemolymph of Hyphantria cunea Drury (Lepidoptera: Arctiidae). J Med Plant Res 5(14):3229–3235. https://doi.org/10.5897/JMPR.9000265

    CAS  Article  Google Scholar 

  57. Zibaee A, Bandani AR, Malagoli D (2012) Methoxyfenozide and pyriproxifen alter the cellular immune reactions of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) against Beauveria bassiana. Pestic Biochem Physiol 102:30–37. https://doi.org/10.1016/j.pestbp.2011.10.006

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Wayne A. Gardner (University of Georgia, Department of Entomology) for reviewing and providing useful comments on earlier draft of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serkan Sugeçti.

Ethics declarations

Conflict of interest

The authors declare no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tunçsoy, B., Sugeçti, S., Büyükgüzel, E. et al. Effects of Copper Oxide Nanoparticles on Immune and Metabolic Parameters of Galleria mellonella L. Bull Environ Contam Toxicol 107, 412–420 (2021). https://doi.org/10.1007/s00128-021-03261-0

Download citation

Keywords

  • Nanoparticles
  • Transferase enzyme
  • Hemocyte
  • Galleria mellonella