Skip to main content

Nanosilver and Silver Nitrate Toxicity in Ex Vivo-Exposed Gills of Fish and Mitigation by Humic Acids

Abstract

Silver nanoparticles (AgNP) are unique because of their biocide properties. Once released to environment, AgNP interact with the natural organic matter which impact on their fate, dispersion, and ultimate toxicity. We carried out an ex vivo exposure of gill of Corydoras paleatus fish to 100 µg L−1 of AgNP or AgNO3, alone and in combination with 10 mg L−1 of humic acids (HA), with the aim to evaluate the potential mitigation of HA on AgNP toxic effects. We analyzed Ag accumulation and oxidative stress biomarkers. The results showed high bioaccumulation after the AgNO3+HA exposure. An inhibition of glutathione-S-transferase enzymatic activity and depletion of reduced glutathione levels were registered after the AgNO3 exposure, and increased lipid peroxidation levels in the case of AgNP one. Oxidative responses were mitigated when the HA were present in the media. Overall, the knowledge about the fate of this emergent pollutant was deepened through this study.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Amado LL, Garcia ML, Ramos PB et al (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2008.11.038

    Article  Google Scholar 

  2. Ale A, Bacchetta C, Rossi AS et al (2018) Nanosilver toxicity in gills of a neotropical fish: metal accumulation, oxidative stress, histopathology and other physiological effects. Ecotox Environ Safe 148:976–984. https://doi.org/10.1016/j.ecoenv.2017.11.072

    CAS  Article  Google Scholar 

  3. Ale A, Galdopórpora JM, Mora MC et al (2021) Mitigation of silver nanoparticles toxicity by humic acids in gills of Piaractus mesopotamicus fish. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12590-w

    Article  Google Scholar 

  4. Bacchetta C, López G, Pagano G et al (2016) Toxicological effects induced by silver nanoparticles in zebra fish (Danio rerio) and in the bacteria communities living at their surface. Bull Environ Contam Toxicol 97:456–462. https://doi.org/10.1007/s00128-016-1883-7

    CAS  Article  Google Scholar 

  5. Bacchetta C, Rossi A, Ale A et al (2014) Combined toxicological effects of pesticides: a fish multi-biomarker approach. Ecol Indic 36:532–538. https://doi.org/10.1016/j.ecolind.2013.09.016

    CAS  Article  Google Scholar 

  6. Batley GE, Kirby JK, Mclaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862. https://doi.org/10.1021/ar2003368

    CAS  Article  Google Scholar 

  7. Beutler E (1982). Catalase, in: Beutler, E. (Ed.), Red cell metabolism, a manual of biochemical methods. Grune and Stratton Inc., New York, 105–106. Chemosphere 82: 308–317. https://doi.org/10.1016/j.chemosphere.2010.10.011

  8. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  9. Britto RS, Longaray Garcia M et al (2012) Effects of carbon nanomaterials fullerene C60 and fullerol C60(OH)18–22 on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation. Aquat Toxicol 114–115:80–87. https://doi.org/10.1016/j.aquatox.2012.02.018

    CAS  Article  Google Scholar 

  10. Cáceres-Vélez PR, Fascineli ML, Rojas E et al (2019) Impact of humic acid on the persistence, biological fate and toxicity of silver nanoparticles: a study in adult zebrafish. Environ Nanotechnol Monit 12:100234. https://doi.org/10.1016/j.enmm.2019.100234

    Article  Google Scholar 

  11. Cáceres-Vélez PR, Fascineli ML, Sousa ME et al (2018) Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag3+ coating. J Hazar Mater 353:173–181. https://doi.org/10.1016/j.jhazmat.2018.04.019

    CAS  Article  Google Scholar 

  12. Chappell MA, Miller LF, George AJ et al (2011) Simultaneous dispersion-dissolution behavior of concentrated silver nanoparticle suspensions in the presence of model organic solutes. Chemosphere 84:1108–1116. https://doi.org/10.1016/j.chemosphere.2011.04.040

    CAS  Article  Google Scholar 

  13. Clark NJ, Shaw BJ, Handy RD (2018) Low hazard of silver nanoparticles and silver nitrate to the haematopoietic system of rainbow trout. Ecotox Envion Safe 152:121–131. https://doi.org/10.1016/j.ecoenv.2018.01.030

    CAS  Article  Google Scholar 

  14. CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) (2005). Marco ético de referencia para las investigaciones biomédicas en animales de laboratorio, de granja y obtenidos de la naturaleza, Buenos Aires, Argentina. www.conicet.gov.ar/wp-content/uploads/OCR-RD-20050701-1047.pdf

  15. de Souza TAJ, Souza LRR, Franchi LP (2019) Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotox Environ Saf 171:691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095

    CAS  Article  Google Scholar 

  16. Drotar A, Phelps P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:35–40. https://doi.org/10.1016/0168-9452(85)90025-1

    CAS  Article  Google Scholar 

  17. Fabrega J, Fawcett SR, Renshaw JC et al (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290. https://doi.org/10.1021/es803259g

    CAS  Article  Google Scholar 

  18. Gao J, Powers K, Wang Y et al (2012) Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 89:96–101. https://doi.org/10.1016/j.chemosphere.2012.04.024

    CAS  Article  Google Scholar 

  19. Gao J, Youn S, Hovsepyan A et al (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9):3322–3328. https://doi.org/10.1021/es803315v

    CAS  Article  Google Scholar 

  20. Glover CN, Wood CM (2004) Physiological interactions of silver and humic substances in Daphnia magna: effects on reproduction and silver accumulation following an acute silver challenge. Comp Biochem Phys C 139:273–280. https://doi.org/10.1016/j.cca.2004.12.005

    CAS  Article  Google Scholar 

  21. Glover CN, Wood CM (2005) Accumulation and elimination of silver in Daphnia magna and the effect of natural organic matter. Aquat Toxicol 73:406–417. https://doi.org/10.1016/j.aquatox.2005.05.002

    CAS  Article  Google Scholar 

  22. Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415. https://doi.org/10.1093/toxsci/kfn256

    CAS  Article  Google Scholar 

  23. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Article  Google Scholar 

  24. Li Y, Chen H, Wang F, Zhao F, Han X, Geng H, Gao L, Chen H, Yuan R, Yao J (2018) Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid. Environ Pollut 243:1334–1342. https://doi.org/10.1016/j.envpol.2018.09.077

    CAS  Article  Google Scholar 

  25. Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. https://doi.org/10.1021/es9035557

    CAS  Article  Google Scholar 

  26. Magesky A, Pelletier E (2018) Cytotoxicity and physiological effects of silver nanoparticles on marine invertebrates. In: Saquib Q et al (eds) Cellular and molecular toxicology of nanoparticles, advances in experimental medicine and biology. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_17

    Chapter  Google Scholar 

  27. Martin JD, Colson T-LL, Langlois VS et al (2016) Biomarkers of exposure to nanosilver and silver accumulation in yellow perch (Perca flavescens). Environ Toxicol Chem 9999:1–10. https://doi.org/10.1002/etc.3644

    CAS  Article  Google Scholar 

  28. Massarsky A, Abrahama R, Nguyen KC et al (2014) Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comp Biochem Phys C 159:10–21. https://doi.org/10.1016/j.cbpc.2013.09.008

    CAS  Article  Google Scholar 

  29. Mekkawy IA, Mahmoud UM, Hana MN et al (2019) Cytotoxic and hemotoxic effects of silver nanoparticles on the African Catfish, Clarias gariepinus (Burchell, 1822). Ecotox Environ Safe 171:638–646. https://doi.org/10.1016/j.ecoenv.2019.01.011

    CAS  Article  Google Scholar 

  30. Mieiro CL, Martins M, da Silva M et al (2019) Advances on assessing nanotoxicity in marine fish—The pros and cons of combining an ex vivo approach and histopathological analysis in gills. Aquat Toxicol 217:105322. https://doi.org/10.1016/j.aquatox.2019.105322

    CAS  Article  Google Scholar 

  31. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  Article  Google Scholar 

  32. Monserrat JM, Garcia ML, Ventura-Lima J et al (2014) Antioxidant, phase II and III responses induced by lipoic acid in the fish Jenynsia multidentata (Anablapidae) and its influence on endosulfan accumulation and toxicity. Pestic Biochem Phys 108:8–15. https://doi.org/10.1016/j.pestbp.2013.10.009

    CAS  Article  Google Scholar 

  33. Nabi MM, Wang J, Meyer M et al (2021) Concentrations and size distribution of TiO2 and Ag engineered particles in five wastewater treatment plants in the United States. Sci Tot Environ 753:142017. https://doi.org/10.1016/j.scitotenv.2020.142017

    CAS  Article  Google Scholar 

  34. Pham T-L (2019) Effect of silver nanoparticles on tropical freshwater and marine microalgae. J Chem 479:9658386. https://doi.org/10.1155/2019/9658386

    CAS  Article  Google Scholar 

  35. Pulit-Prociak J, Banach M (2016) Silver nanoparticles—A material of the future…? Open Chem 14:76–91. https://doi.org/10.1515/chem-2016-0005

    CAS  Article  Google Scholar 

  36. Schlenk D, Handy R, Steinert S et al (2008) Biomarkers. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca, pp 683–731

    Chapter  Google Scholar 

  37. Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534. https://doi.org/10.1093/toxsci/kfq076

    CAS  Article  Google Scholar 

  38. Taju G, Abdul Majeed S, Nambi KSN et al (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C 161:41–52. https://doi.org/10.1016/j.cbpc.2014.01.007

    CAS  Article  Google Scholar 

  39. Tanaka K, Sano T, Ishizuka K et al (1994) Comparison of properties of leaf and root glutathione reductases from spinach. Physiol Plant 91:353–358. https://doi.org/10.1111/j.1399-3054.1994.tb02960.x

    CAS  Article  Google Scholar 

  40. Venturino A, Anguiano OL, Gauna L et al (2001) Thiols and polyamines in the potentiation of malathion toxicity in larval stages of the toad Bufo arenarum. Comp Biochem Physiol C Toxicol Pharmacol 130(2):191–198. https://doi.org/10.1016/S1532-0456(01)00241-1

    CAS  Article  Google Scholar 

  41. Wang Z, Quik JT, Song L et al (2015) Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environ Toxicol Chem 34(6):1239–1245. https://doi.org/10.1002/etc.2936

    CAS  Article  Google Scholar 

  42. Westerhoff P, Atkinson A, Fortner J et al (2018) Low risk posed by engineered and incidental nanoparticles in drinking water. Nat Nanotechnol 13:661–669. https://doi.org/10.1038/s41565-018-0217-9

    CAS  Article  Google Scholar 

  43. Xiao B, Wang X, Yang J, Wang K, Zhang Y, Sun B, Zhang T, Zhu L (2020) Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. Ecotox Environ Safe 194:110454. https://doi.org/10.1016/j.ecoenv.2020.110454

    CAS  Article  Google Scholar 

  44. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15(2):212–216. https://doi.org/10.1016/0006-2944(76)90049-1

    CAS  Article  Google Scholar 

  45. Yin Y, Yang X, Zhou X et al (2015) Water chemistry controlled aggregation and photo-transformation of silver nanoparticles. J Environ Sci. https://doi.org/10.1016/j.jes.2015.04.005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Universidad Nacional del Litoral (CAID-UNL), CONICET and Agencia Nacional de Promoción Científica y Técnica PICT 2018-01271. The authors thank Gerardo López (Nanotek S.A.) for providing the nanosilver stock solution and María C. Mora for her collaboration during the laboratory work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Analía Ale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ale, A., Galdopórpora, J.M., Desimone, M.F. et al. Nanosilver and Silver Nitrate Toxicity in Ex Vivo-Exposed Gills of Fish and Mitigation by Humic Acids. Bull Environ Contam Toxicol 107, 421–426 (2021). https://doi.org/10.1007/s00128-021-03257-w

Download citation

Keywords

  • Bioaccumulation
  • Corydoras paleatus
  • Nanotoxicology
  • Oxidative stress
  • Silver nanoparticles