Skip to main content

Heavy Metal Accumulation and Copper Localization in Scopelophila cataractae in Thailand

Abstract

Four specimens of gametophores and protonemata of Scopelophila cataractae (copper moss) were collected from a stream in Doi Suthep-Pui National Park, Thailand in order to determine heavy metal accumulation and Cu localization. The order of total metal concentrations in the protonemata and leaf cell surfaces of S. cataractae was Fe > Zn > Cu. Significant Cu values (> 400 mg kg−1) were found in both gametophores and protonemata. Growth substrates were considered as a key source of heavy metals in the sampling stream. X-ray spectrometry (EDS micro-analyser) detected the localization of ten elements (C, O, Mg, Al, Si, Ca, S, Cu, Zn and In); substantial atomic percentages of Al, Cu and Zn were noted in leaf surfaces and protonemata. These metallic elements were found in highest proportion. To some extent, cell surfaces at the basal leaf costa showed the highest peak value compared to medial and apical leaf portions (≈ 4.3 at.%). This Cu moss can be used as a bioindicator to reflect anthropogenic activities in stream ecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abessor C, Robinson R (2010) Mobilisation of iron and manganese from sediments of a Scottish upland reservoir. J Limnol 69(1):42–53

    Article  Google Scholar 

  2. Aikawa Y, Nagano I, Sakamoto S, Nishiyama M, Matsumoto S (1999) Contents of heavy metal elements in copper mosses: Scopelophila ligulate, Scopelophila cataractae, and Mielichhoferia japonica and their substrates. Soil Sci Plant Nutr 45(4):835–842

    CAS  Article  Google Scholar 

  3. Akiyama H (2010) Scopelophila cataractae found growing on tree trunks in Northern Thailand. Trop Bryol 32:97–99

    Google Scholar 

  4. Antreich S, Sassmann S, Lang I (2016) Limited accumulation of copper in heavy metal adapted mosses. Plant Physiol Biochem 101:141–148

    CAS  Article  Google Scholar 

  5. APHA, AWWA and WEF (American Public Health Association, American Water Works Association and Water Environment Federation) (2005) Standard methods for examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  6. Crandall-Stotler BJ, Stotler RE, Long DG (2008) Morphology and classification of the Marchantiophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 1–54

    Google Scholar 

  7. Degola F, De Benedictis M, Petraglia A, Massimi A, Fattorini L, Sorbo S, Basile A, di Toppi LS (2014) A Cd/Fe/Zn responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) Dumort. Plant Cell Physiol 55:1884–1891

    CAS  Article  Google Scholar 

  8. Eddy A (1990) A handbook of Malesian mosses, 2. Leucobryaceae to Buxbaumiaceae. British Museum of Natural History, London

    Google Scholar 

  9. Giraldo JPS (2018) Application of the geochemical fractionation of metals in sediments for environmental analysis of a water reservoir. Case Riogrande Ii (Antioquia – Columbia). IntechOpen, London. https://doi.org/10.5772/intechopen.76223

    Book  Google Scholar 

  10. Hartman EL (1969) The ecology of the copper moss Mielichhoferia mielichhoferi in Colorado. Bryologist 72(1):56–59

    Article  Google Scholar 

  11. He S (2021) An annotated checklist and atlas of the mosses of Thailand. The moss flora of Thailand home page. Missouri Botanical Garden, St. Louis. http://www.mobot.org/MOBOT/moss/Thailand/welcome.shtml. Accessed 11 March 2021

  12. Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, Suzuki S, Nakatsuka S, Kawakami S, Kikuchi J, Sakakibara H (2017) Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS ONE 12(12):e0189726. https://doi.org/10.1371/journal.pone.0189726

    CAS  Article  Google Scholar 

  13. Kayee P, Songphim W, Parkpien A (2015) Using Thai native moss as bio-adsorbent for contaminated heavy metal in air. Procedia Soc Behav Sci 197:1037–1042

    Article  Google Scholar 

  14. Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167(5):358–364

    CAS  Article  Google Scholar 

  15. Krishna AK, Mohan KR, Murthy NN (2009) Determination of heavy metals in soil, sediment and rock by inductively coupled plasma optical emission spectrometry: microwave-assisted acid digestion versus open acid digestion technique. At Spectrosc 30(3):75–81

    CAS  Google Scholar 

  16. Mazzoni AC, Lanzer R, Bordin J, Schäfer A, Wasum R (2012) Mosses and indicators of atmospheric metal deposition in an industrial area of southern Brazil. Acta Bot Bras 26(3):553–558

    Article  Google Scholar 

  17. Nakajima H, Fujimoto K, Yoshitani A, Yamamoto Y, Sakurai H, Itoh K (2012) Effect of copper stress on cup lichens Cladonia humilis and C. subconistea growing on copper-hyperaccumulating moss Scopelophila cataractae at copper-polluted sites in Japan. Ecotoxicol Environ Saf 84:341–346

    CAS  Article  Google Scholar 

  18. Nomura T, Itouga M, Kojima M, Kato Y, Sakakibara H, Hasezawa S (2015) Copper mediates auxin signaling to control cell differentiation in the copper moss Scopelophila cataractae. J Exp Bot 66(5):1205–1213

    CAS  Article  Google Scholar 

  19. Okoro EE, Okolie AG, Sanni SE, Omeje M (2020) Toxicity of heavy metals to subsurface lithofacies and drillers during drilling of hydrocarbon wells. Sci Rep 10:6152. https://doi.org/10.1038/s41598-020-63107-3

    CAS  Article  Google Scholar 

  20. Proctor MCF, Tuba (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? N Phytol 156:327–349

    Article  Google Scholar 

  21. Satake K, Shibata K, Nishikawa M, Fuwa K (1988) Copper accumulation and location in the moss Scopelophila cataractae. J Bryol 15(2):353–376

    Article  Google Scholar 

  22. Satake K, Nishikawa M, Shibata K (1990) A copper-rich protonemal colony of the moss Scopelophila cataractae. J Bryol 16(1):109–116

    Article  Google Scholar 

  23. Shaw AJ (1987) Evolution of heavy metal tolerance in bryophytes II. An ecological and experimental investigation of the “copper moss,” Scopelophila cataractae (Pottiaceae). Am J Bot 74(6):813–821

    CAS  Article  Google Scholar 

  24. Shaw AJ (1993) Population biology of the rare copper moss, Scopelophila cataractae. Am J Bot 80(9):1034–1041

    Article  Google Scholar 

  25. Stanković JD, Sabovljević AD, Sabovljević MS (2018) Bryophytes and heavy metal: a review. Acta Bot Croat 77(2):109–118

    Article  Google Scholar 

  26. Sukkharak P, Chantanaorrapint S (2014) Bryophyte studies in Thailand: past, present, and future. Cryptogam Bryol 35:5–17

    Article  Google Scholar 

  27. Suzuki Y, Takenaka C, Tomioka R, Tsubota H, Takasaki Y, Umemura T (2016) Accumulation of arsenic and copper by bryophytes growing in an aquatic environment near copper mine tailings. Mine Water Environ 35:265–272

    CAS  Article  Google Scholar 

  28. Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230

    CAS  Article  Google Scholar 

  29. Taiz RL, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  30. Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES (2012) The resilience and functional role of moss in boreal and arctic ecosystems. N Phytol 196:49–67

    CAS  Article  Google Scholar 

  31. Vatansever R, Ozyigit II, Filiz E (2017) Essential and beneficial trace elements in plants, and their transport in roots: a review. Appl Biochem Biotechnol 181:464–482

    CAS  Article  Google Scholar 

  32. Zander RH (1967) The New World distribution of Scopelophila (= Merceya). Bryologist 70:405–413

    Article  Google Scholar 

  33. Zander RH, Eckel PM (1993) Genera of the Pottiaceae: mosses of harsh environments. Buffalo Society of Natural Sciences, Buffalo

    Google Scholar 

Download references

Acknowledgements

We thank the Head and all staff of Doi Suthep-Pui National Park for logistical assistance. Thanks also to the Department of National Parks, Wildlife and Plant Conservation of Thailand for permission to collect specimens. The first author is deeply grateful to the many years of encouragement given by Dr. Kanya Santanachote, the late Dr. B.C. Tan and the late J.F. Maxwell. This research was also supported in part by Chiang Mai University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weeradej Meeinkuirt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Printarakul, N., Meeinkuirt, W. Heavy Metal Accumulation and Copper Localization in Scopelophila cataractae in Thailand. Bull Environ Contam Toxicol 107, 530–536 (2021). https://doi.org/10.1007/s00128-021-03246-z

Download citation

Keywords

  • Scopelophila cataractae
  • X-ray spectrometer
  • Heavy metal accumulation