Skip to main content

Monitoring of Neonicotinoid Pesticides in Water-Soil Systems Along the Agro-Landscapes of the Cauvery Delta Region, South India

Abstract

The prophylactic use of neonicotinoids in paddy fields has raised concern due to its toxicity to ecological systems and human health. The present study evaluated the concentrations of neonicotinoids such as clothianidin, imidacloprid, thiamethoxam, acetamiprid, and thiacloprid in the water-soil systems of the paddy fields, and their potential discharge into the groundwater along the Cauvery delta region, South India. Though neonicotinoids are extensively sprayed in the paddy fields, the concentration of residues analyzed by QuEChERS, combined with LC–MS/MS found no detectable residues at concentrations above LOD. The LOD and the LOQ values for water and soil were 0.001 ppm and 0.0025 ppm and 0.025 ppm and 0.05 ppm respectively. The results of the study found that neonicotinoids are less persistent in the water-soil systems of the delta region as they are readily exposed to photolysis and undergo rapid microbial degradation. Further, the hydropedological characteristics of the highly saturated delta soil facilitate ready leaching followed by vertical migration and infiltration into the soil aquifers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and dispersive solid phase extraction for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    CAS  Article  Google Scholar 

  2. Benton EP, Grant JF, Mueller TC, Webster RJ, Nicholls RJ (2016) Consequences of imidacloprid treatments for hemlock woolly adelgid on stream water quality in the southern Appalachians. For Ecol Manag 360:152–158

    Article  Google Scholar 

  3. Blanchoud H, Schott C, Tallec G, QueyrelW, Gallois N, Habets F, ViennotP, Ansart P, Desportes A, Tournebize J, Puech T (2019) How Should Agricultural Practices Be Integrated to Understand and Simulate Long-Term Pesticide Contamination in the Seine River Basin? In: N. Flipo, P. Labadie, L Lestel (eds) The Seine River Basin. The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg, vol 90, pp 141–162

  4. Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22(1):35–67

    CAS  Article  Google Scholar 

  5. Botias C, David A, Hill EM, Goulson D (2016) Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566–567:269–278

    Article  Google Scholar 

  6. Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134

    CAS  Article  Google Scholar 

  7. Chan DSW, Prosser RS, Raine R-G, NE, (2019) Assessment of risk to hoary squash bees (Peponapispruinosa) and other ground-nesting bees from systemic insecticides in agricultural soil. Sci Rep 9:11870

    Article  Google Scholar 

  8. Cox C (2001) Insecticide factsheet—imidacloprid. J Pestic Reform 21:15–21

    Google Scholar 

  9. Craddock HA, Huang D, Turner PC, Quiros-Alcala L, Payne-Sturges DC (2019) Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ Health 18:7

    Article  Google Scholar 

  10. dePerre C, Murphy TM, Lydy MJ (2015) Fate and effects of clothianidin in fields using conservation practices. Environ Toxicol Chem 34(2):258–265

    CAS  Article  Google Scholar 

  11. Dragon K, Drozdzynski D, Gorski J, Kruc R (2019) The migration of pesticide residues in groundwater at a bank filtration site (Krajkowo well field, Poland). Environ Earth Sci 78:593

    Article  Google Scholar 

  12. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64(11):1099–1105

    CAS  Article  Google Scholar 

  13. Giorio C, Safer A, Sanchez-Bayo F et al (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. Environ Sci Pollut Res 28:11716–11748

    Article  Google Scholar 

  14. Gunal AC, Erkmen B, Pacal E et al (2020) Sub-lethal effects of imidacloprid on nile tilapia (Oreochromisniloticus). Water Air Soil Pollut 231:4

    CAS  Article  Google Scholar 

  15. Hladik ML, Kolpin DW (2016) First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ Chem 13:12–20

    CAS  Article  Google Scholar 

  16. Holtswarth JN, Rowland FE, Puglis HJ et al (2019) Effects of the neonicotinoid insecticide clothianidin on southern leopard frog (Rana sphenocephala) tadpole behavior. Bull Environ Contam Toxicol 103(5):717–722

    CAS  Article  Google Scholar 

  17. Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32(1):32–48

    CAS  Article  Google Scholar 

  18. Jurado A, Walther M, Diaz-Cruz MS (2019) Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci Total Environ 663:285–296

    CAS  Article  Google Scholar 

  19. Karmakar R, Singh SB, Kulshrestha G (2006) Persistence and transformation of thiamethoxam, a neonicotinoid insecticide, in soil of different agroclimatic zones of India. Bull Environ Contam Toxicol 76(3):400–406

    CAS  Article  Google Scholar 

  20. Leiva JA, Nkedi-Kizza P, Morgan KT, Kadyampakeni DM (2017) Imidacloprid transport and sorption nonequilibrium in single and multilayered columns of Immokalee fine sand. PLoS ONE 12(8):e0183767

    Article  Google Scholar 

  21. Limay-Rios V, Forero LG, Xue YG, Smith J, Baute T, Schaafsma A (2016) Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ Toxicol Chem 35(2):303–310

    CAS  Article  Google Scholar 

  22. Mineau P (2019) Impacts of Neonics in New York Water. Their Use and Threats to the State’s Aquatic Ecosystems. Technical report. Pierre Mineau Consulting. 1–18

  23. Mineau P, Palmer C (2013) The impact of the nation’s most widely used insecticides on birds. American Bird Conservancy, USA

    Google Scholar 

  24. Morrissey CA, Mineau P, Devries JH, Sanchex-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303

    CAS  Article  Google Scholar 

  25. Mortl M, Kereki O, Darvas B, Klatyik S, Vehovszky A, Gyori J, Szekacs A (2016) Study on soil mobility of two neonicotinoid insecticides. J Chem 4546584

  26. Op de Beeck L, Verheyen J, Olsen K, Stoks R (2017) Negative effects of pesticides under global warming can be counteracted by a higher degradation rate and thermal adaptation. J Appl Ecol 54:1847–1855

    CAS  Article  Google Scholar 

  27. Pietrzak D, Kania J, Kmiecik E, Malina G, Wątor K (2020) Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255:126981

    CAS  Article  Google Scholar 

  28. Reynoso EC, Torres E, Bettazzi F, Palchetti I (2019) Trends and perspectives in immunsensors for determination of currently-used pesticides: the case of glyphosate, organophosphates, and neonicotinoids. Biosensors 9(1):20

    CAS  Article  Google Scholar 

  29. Rundlof M, Andersson GKS, Bommarco R, Fries I, Hederstrom V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    Article  Google Scholar 

  30. Sabourmoghaddam N, Zakaria MP, Omar D (2015) Evidence for the microbial degradation of imidacloprid in soils of Cameron highlands. J Saudi Soc Agric Sci 14:82–188

    Google Scholar 

  31. Sattler C, Schrader J, Farkas VM et al (2018) Pesticide diversity in rice growing areas of Northern Vietnam. Paddy Water Environ 16(2):339–352

    Article  Google Scholar 

  32. Schaafsma A, Limay-Rios V, Baute T, Smith J, Xue Y (2015) Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario. PLoS ONE 10(2):e0118139

    Article  Google Scholar 

  33. Smalling KL, Reeves R, Muths E, Vandever M, Battaglin WA, Hladik ML, Pierce CL (2015) Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Sci Total Environ 502:80–90

    CAS  Article  Google Scholar 

  34. Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res 24:17285–17325

    CAS  Article  Google Scholar 

  35. Zhang C, Tian D, Yi XH, Zhang T, Ruan J, Wu R, Chen C, Huang M, Ying GG (2019) Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China. Chemosphere 217:437–446

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author(s) thank the University Grants Commission, Government of India for the funds. We acknowledge Tamilnadu Agricultural University for the analytical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manjula Menon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3724 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menon, M., Mohanraj, R. & Sujata, W. Monitoring of Neonicotinoid Pesticides in Water-Soil Systems Along the Agro-Landscapes of the Cauvery Delta Region, South India. Bull Environ Contam Toxicol 106, 1065–1070 (2021). https://doi.org/10.1007/s00128-021-03233-4

Download citation

Keywords

  • Neonicotinoids
  • QuEChERS
  • Hydropedological
  • Leaching
  • Infiltration