Skip to main content

Short‐Term Effects of Wildfire Ash on Water Quality Parameters: A Laboratory Approach

Abstract

Climate change coupled with inappropriate burning practices has increased large-scale wildfires in Brazilian tropical savannahs (Cerrado). Considering that the effects of ash from wildfires on water parameters are scarcely known in tropical savannahs, this study investigated the chemical changes caused by ash in the soft water, commonly used for bioassays. To this end, ash samples were collected immediately following a fire in a Cerrado area (Federal District, Brazil) and put into water (1:10 ash:soft-water m/v) to check physical parameters under laboratory conditions. Major water-extractable elements (K+, SO42, Ca2+, PO43−, Na+, Mg2+) from ash strongly altered water quality parameters: elevated total dissolved solids and conductivity levels as well as an increase in pH and decrease in dissolved oxygen concentration were reported over the course of the experiment (15 days) compared to control conditions. Our results point out relevant solubilized compounds from ashes which may potentially impact water quality in post-fire scenarios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. ABNT (2005) Associação Brasileira de Normas Técnicas. Ecotoxicologia aquática – Toxicidade crônica – Método de ensaio com Ceriodaphnia spp. (Crustacea, Cladocera). NBR 13373. ABNT, Rio de Janeiro

    Google Scholar 

  2. Audry S, Akerman A, Riotte J, Oliva P, Maréchal JC, Fraysse F, Pokrovsky OS, Braun JJ (2014) Contribution of forest fire ash and plant litter decay on stream dissolved composition in a sub-humid tropical watershed (Mule Hole, Southern India). Chem Geol 372:144–161

    CAS  Article  Google Scholar 

  3. Bixby RJ, Cooper SD, Gresswell RE, Brown LE, Dahm N, Dwire A, Clifford N, Dwire KA (2015) Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshw Sci 34:1340–1350. https://doi.org/10.1086/684073

    Article  Google Scholar 

  4. Bodí MB, Martin D, Santín C, Doerr SH, Balfour VN, Pereira P, Mataix-Solera J, Cerdà A (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci Rev 30:103–127

    Article  Google Scholar 

  5. Bohlen J (2003) Temperature and oxygen requirements of early life stages of the endangered spined loach, Cobitis taenia L. (Teleostei, Cobitidae) with implications for the management of natural populations. Arch Hydrobiol 157:195–212

    Article  Google Scholar 

  6. Brito DQ, Passos CJS, Muniz DH, Oliveira-Filho EC (2017) Aquatic ecotoxicity of ashes from Brazilian savanna wildfires. Environ Sci Pollut Res 24:19671–19682. https://doi.org/10.1007/s11356-017-9578-0

    CAS  Article  Google Scholar 

  7. Campos I, Abrantes N, Vidal T, Bastos AC, Gonçalves F, Keizer JJ (2012) Assessment of the toxicity of ash-loaded runnoff from a recently burnt eucalypt plantation. Eur J Forest Res 131:1889–1903

    Article  Google Scholar 

  8. Campos I, Abrantes N, Keizer JJ, Vale C, Pereira P (2016) Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Sci Total Environ 572:1363–1376

    CAS  Article  Google Scholar 

  9. Cerrato JM, Blake JM, Hirani C, Clark AL, Ali AM, Artyushkova K, Peterson E, Bixby RJ (2016) Wildfires and water chemistry: effect of metals associated with wood ash. Environ Sci: Process Impacts 18(8):1078–1089

    CAS  Article  Google Scholar 

  10. Dahm CN, Candelaria-Ley RI, Reale CS, Reale JK, Van Horn DJ (2015) Extreme water quality degradation following a catastrophic forest fire. Freshw Biol 60(12):2584–2599. https://doi.org/10.1111/fwb.12548

    CAS  Article  Google Scholar 

  11. Ferreira J, Pardini R, Metzger JP, Fonseca CR, Pompeu PS, Sparovek G, Louzada J (2012) Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. J Appl Ecol 49:535–541

    Google Scholar 

  12. EMBRAPA (1997) Empresa Brasileira de Pesquisa Agropecuária. Serviço Nacional de Levantamento e Conservação de Solos. Manual de métodos de análise de solos, 2nd edn. Embrapa, Rio de Janeiro

    Google Scholar 

  13. Gonino GMR, Figueiredo BRS, Manetta GI, Zaia Alves GH, Benedito E (2019) Fire increases the productivity of sugarcane, but it also generates ashes that negatively affect native fish species in aquatic systems. Sci Total Environ 664:215–221. https://doi.org/10.1016/j.scitotenv.2019.02.022

    CAS  Article  Google Scholar 

  14. Lapola DM et al (2014) Pervasive transition of the Brazilian land-use system. Nat Clim Change 4:27–35

    Article  Google Scholar 

  15. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D (2017) Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci Rep 7(1):45242. https://doi.org/10.1038/srep45242

    CAS  Article  Google Scholar 

  16. Mansilha C, Duarte CG, Melo A, Ribeiro J, Flores D, Marques JE (2017) Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustain Resour Manag 5:319–331

    Article  Google Scholar 

  17. Marañon-Jiménez S, Castro J, Fernández-Ondoño E, Zamora R (2013) Charred wood remaining after a wildfire as a reservoir of macro-and micronutrients in a Mediterranean pine forest. Int J Wildland Fire 22:681–695

    Article  Google Scholar 

  18. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  Article  Google Scholar 

  19. Nunes JP, Doerr SH, Sheridan G, Neris J, Santín C, Emelko MB, Silins U, Robichaud PR, Elliot WJ, Keizer J (2018) Assessing water contamination risk from vegetation fires: challenges, opportunities and a framework for progress. Hydrol Process 32:687–694. https://doi.org/10.1002/hyp.11434

    CAS  Article  Google Scholar 

  20. Oliveira-Filho EC, Brito DQ, Dias ZMB, Guarieiro MS, Carvalho EL, Fascineli ML, Niva CC, Grisolia CK (2018) Effects of ashes from a Brazilian savanna wildfire on water, soil and biota: an ecotoxicological approach. Sci Total Environ 618:101–111

    CAS  Article  Google Scholar 

  21. Pereira P, Úbeda X, Martin D, Mataix-Solera J, Guerrero C (2011) Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environ Res 111(2):237–247

    CAS  Article  Google Scholar 

  22. Pereira P, Úbeda X, Martin DA (2012) Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 191:105–114

    CAS  Article  Google Scholar 

  23. Qian Y, Miao SL, Gu B, Li YC (2009) Estimation of post-fire nutrient loss in the Florida Everglades. J Environ Qual 38:1812–1820

    CAS  Article  Google Scholar 

  24. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  25. Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecologia e Flora. Embrapa Cerrados. Embrapa Informação Tecnológica, Brasília. pp 151–212

    Google Scholar 

  26. Rieman B, Gresswell R, Rinne J (2012) Fire and fish: a synthesis of observation and experience. In: Luce C, Morgan P, Dwire K, Isaak D, Holden Z, Rieman B (eds) Climate change, forests, fire, water, and fish: building resilient landscapes, streams, and managers. Gen. Tech. Rep. RMRS-GTR-290. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, pp 159–175

    Google Scholar 

  27. Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Article  Google Scholar 

  28. Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth-Sci Rev 74(3–4):269–307

    Article  Google Scholar 

  29. Silva V, Pereira JL, Campos I, Keizer JJ, Gonçalves F, Abrantes N (2015) Toxicity assessment of aqueous extracts of ash from forest fires. Catena 135:401–408

    CAS  Article  Google Scholar 

  30. Teobaldo D, Baptista GMM (2013) Quantificação do grau de severidade de queimada em unidades de conservação no Distrito Federal por meio dos índices espectrais dNBR e RdNBR. Anais do XVI Simpósio Brasileiro de Sensoriamento Remoto. INPE, Foz do Iguaçu, pp 6534–6540

    Google Scholar 

  31. Úbeda X, Pereira P, Outeiro L, Martin DA (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad Dev 20:589–608

    Article  Google Scholar 

  32. Ulery AL, Graham RC, Amrhein C (1993) Wood-ash composition and soil pH following intense burning. Soil Sci 156:358–364

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Council of Scientific and Technological Development (CNPq), under Research Grant # 478637/2012-8. Luiz H. G. Santos received a grant from PIBIC/UniCEUB. Águas Emendadas Ecological Station and Embrapa Cerrados are acknowledged for permission to perform this study in their areas and facilities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Darlan Q. Brito or Eduardo C. Oliveira-Filho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brito, D.Q., Santos, L.H.G., Passos, C.J.S. et al. Short‐Term Effects of Wildfire Ash on Water Quality Parameters: A Laboratory Approach. Bull Environ Contam Toxicol 107, 500–505 (2021). https://doi.org/10.1007/s00128-021-03220-9

Download citation

Keywords

  • Cerrado biome
  • Fire
  • Ash
  • Water
  • Physicochemical parameters