Skip to main content

Influence of Humic Acid on Oxidative Stress Induced by Arsenite and Arsenate Waterborne Exposure in Danio rerio

Abstract

The studies on how humic acid (HA) influences the oxidative stress of arsenic in aquatic organism is limited. Using Danio rerio as case study, we explored the oxidative stress effects in aquatic organism after 96 h exposure to the HA and arsenic. Results revealed the co-exposure of HA and arsenite elevated the superoxide dismutase activities and downgraded the malondialdehyde. Thus, we speculate that HA may alleviate the oxidative stress induced by arsenite, which may be caused by the HA’s coating in combination with the complexation of arsenite and HA. In addition, HA acted as the reactive oxygen species scavenger, promising to eliminate the oxygen free radicals. Contrastingly, HA may impact little on the arsenate exposure. This study can help better understand oxidative stress mechanism of co-exposure of arsenic and HA in aquatic environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Al-Reasi HA, Smith SD, Wood CM (2016) The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio). J Exp Biol 219:2289–2299. https://doi.org/10.1242/jeb.139444

    Article  Google Scholar 

  2. Chen LZ, Song DD, Zhang W, Zhang CC, Zhang L (2019) The dynamic changes of arsenic bioaccumulation and antioxidant responses in the marine medaka Oryzias melastigma during chronic exposure. Aquat Toxicol 212:110–119. https://doi.org/10.1016/j.aquatox.2019.05.001

    CAS  Article  Google Scholar 

  3. Cui D, Zhang P, Li HP, Zhang ZX, Luo WB, Yang ZG (2020) Biotransformation of dietary inorganic arsenic in a freshwater fish Carassius auratus and the unique association between arsenic dimethylation and oxidative damage. J Hazard Mater 391:122153. https://doi.org/10.1016/j.jhazmat.2020.122153

    CAS  Article  Google Scholar 

  4. Deng JC, Fu DW, Hu WP, Lu X, Wu YH, Bryan H (2020) Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: implications for bioremediation of heavy metal pollution. Bioresource Technol 303:122963. https://doi.org/10.1016/j.biortech.2020.122963

    CAS  Article  Google Scholar 

  5. Fan WH, Ren JQ, Li XM, Wei CY, Xue F, Zhang N (2015) Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate. Environ Toxicol Chem 34(11):2629–2635. https://doi.org/10.1002/etc.3119

    CAS  Article  Google Scholar 

  6. Fan WH, Liang DY, Wang XR, Ren JQ, Xiao ST, Zhou TT (2019) Two-generational effects and recovery of arsenic and arsenate on Daphnia magna in the presence of nano-TiO2. Ecotox Environ Safe 172:136–143. https://doi.org/10.1016/j.ecoenv.2019.01.072

    CAS  Article  Google Scholar 

  7. Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597. https://doi.org/10.1016/j.envint.2019.02.058

    CAS  Article  Google Scholar 

  8. Liu GL, Cai Y (2013) Studying arsenite-humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry. J Hazard Mater 262:1223–1229. https://doi.org/10.1016/j.jhazmat.2012.05.043

    CAS  Article  Google Scholar 

  9. OECD (2019) Test guideline No. 203 fish, acute toxicity testing. OECD, Paris. https://doi.org/10.1787/9789264069961-en

    Book  Google Scholar 

  10. Podgorski J, Berg M (2020) Global threat of arsenic in groundwater. Science 368(6493):845–850. https://doi.org/10.1126/science.aba1510

    CAS  Article  Google Scholar 

  11. Qin W, Wang Y, Fang G, Liu C, Sui Y, Zhou D (2016) Oxidation mechanism of As(III) in the presence of polyphenols: new insights into the reactive oxygen species. Chem Eng J 285:69–76. https://doi.org/10.1016/j.cej.2015.09.095

    CAS  Article  Google Scholar 

  12. Ren JQ, Fan WH, Wang XR, Ma QQ, Li XM, Xu ZZ, Wei CY (2017) Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna. Water Res 108:68–77. https://doi.org/10.1016/j.watres.2016.10.052

    CAS  Article  Google Scholar 

  13. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759. https://doi.org/10.1016/j.envint.2009.01.005

    CAS  Article  Google Scholar 

  14. Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792. https://doi.org/10.1021/cr300015c

    CAS  Article  Google Scholar 

  15. Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM (2009) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157(12):3479–3484. https://doi.org/10.1016/j.envpol.2009.06.023

    CAS  Article  Google Scholar 

  16. Wang ZF, Cui ZJ (2016) Accumulation, biotransformation and multi-biomarker responses after exposure to arsenic species in the earthworm Eisenia fetida. Toxicol Res-UK 5(2):500–510. https://doi.org/10.1039/c5tx00396b

    CAS  Article  Google Scholar 

  17. Wang XY, Liu LP, Wang XR, Ren JQ, Jia P, Fan WH (2020) Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: a comparative study between As(III) and As(V) exposure. Environ Pollut 256:113459. https://doi.org/10.1016/j.envpol.2019.113459

    CAS  Article  Google Scholar 

  18. Wang Q, Wen JY, Zheng JX, Zhao JQ, Qiu CS, Xiao D, Mu L, Liu XW (2021) Arsenate phytotoxicity regulation by humic acid and related metabolic mechanisms. Ecotox Environ Safe 207:111379. https://doi.org/10.1016/j.ecoenv.2020.111379

    CAS  Article  Google Scholar 

  19. Zhang JY, Ni YY, Ding TD, Zhang CL (2014) The role of humic acid in the toxicity of arsenite to the diatom Navicula sp. Environ Sci Pollut R 21(6):4366–4375. https://doi.org/10.1007/s11356-013-2413-3

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors in this study are grateful for the support from the National Natural Science Foundation of China (Grant No. 51778031).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenhong Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, L., Liang, D. et al. Influence of Humic Acid on Oxidative Stress Induced by Arsenite and Arsenate Waterborne Exposure in Danio rerio. Bull Environ Contam Toxicol 106, 786–791 (2021). https://doi.org/10.1007/s00128-021-03197-5

Download citation

Keywords

  • Arsenic species
  • Biomarker
  • Dissolved organic matter
  • Toxicity