Skip to main content

Metals and Metalloids in Feathers of Neotropic Cormorants (Phalacrocorax brasilianus) Nesting in Lake Livingston and Richland Creek, Texas, USA

Abstract

Breast feathers of Neotropic Cormorants (Phalacrocorax brasilianus) from two nesting colonies in Lake Livingston (LALIV) and Richland Creek, Texas, were collected during 2014 and were analyzed for metals and metalloids. Mean concentrations of Al, As, Cr, Cu, Fe, Pb, Sb, and Se were not significantly different in breast feathers of cormorants from the two locations or between sexes. However, mean concentrations of Co, Mn, Ni, and V were significantly greater in feathers of cormorants from Richland Creek than in those from LALIV; and Zn concentrations were greater in cormorants from LALIV than in those from Richland Creek (p < 0.05). Overall, except for a few outliers for Pb, concentrations of heavy metals and metalloids in feathers were similar or lower than those reported in other species of cormorants from all over the world and were below levels of concern for lethal or sublethal effects on the species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abbasi NA, Jaspers VLB, Chaudhry MJI, Ali S, Malik RN (2015) Influence of taxa, trophic level, and location on bioaccumulation of toxic metals in bird’s feathers: a preliminary biomonitoring study using multiple bird species from Pakistan. Chemosphere 120:527–537. https://doi.org/10.1016/j.chemosphere.2014.08.054

    CAS  Article  Google Scholar 

  2. Adriano DC (2001) Bioavailability of trace metals. In: Adriano DC (ed) Trace elements in terrestrial environments. Springer, New York

    Chapter  Google Scholar 

  3. Assaad HI, Hou Y, Zhou L, Carroll RJ, Wu G (2015) Rapid publication-ready MS-Word tables for two-way ANOVA. SpringerPlus 4:33. https://doi.org/10.1186/s40064-015-0795-z

    Article  Google Scholar 

  4. Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–310

    Google Scholar 

  5. Burger J, Gochfeld M (2001) Metal levels in feathers of cormorants, flamingos and gulls from the coast of Namibia in Southern Africa. Environ Monit Assess 69:195–203. https://doi.org/10.1023/A:1010710108434

    CAS  Article  Google Scholar 

  6. Drenner RW, Chumchal MM, Jones CM, Lehmann CM, Gay DA, Donato DI (2013) Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South Central United States. Environ Sci Technol 47:1274–1279

    CAS  Article  Google Scholar 

  7. Einoder L, MacLeod C, Coughanowr C (2018) Metal and isotope analysis of bird feathers in a contaminated estuary reveals bioaccumulation, biomagnification, and potential toxic effects. Arch Environ Contam Toxicol 75:96–110. https://doi.org/10.1007/s00244-018-0532-z

    CAS  Article  Google Scholar 

  8. Fuchsman PC, Brown LE, Henning MH, Bock MJ, Magar VS (2016) Toxicity reference values for methyl mercury effects on avian reproduction: critical review and analysis. Environ Toxicol Chem 36:294–319. https://doi.org/10.1002/etc.3606

    CAS  Article  Google Scholar 

  9. Furness RW, Muirhead SJ, Woodburn M (1986) Using bird feathers to measure mercury in the environment: relationships between mercury content and moult. Mar Pollut Bull 17:27–30

    CAS  Article  Google Scholar 

  10. García-Fernández AJ, Espín S, Martínez-López E (2013) Feathers as a biomonitoring tool of polyhalogenated compounds: a review. Environ Sci Technol 47:3028–3043. https://doi.org/10.1021/es302758x

    CAS  Article  Google Scholar 

  11. Gerrity D, Pecson B, Trussell RS, Trussell RR (2013) Potable reuse treatment trains throughout the world. J Water Supply Res Technol AQUA 62:321–338

    CAS  Article  Google Scholar 

  12. Irena H, Katarina J, Branko K, Stefan S (2017) Allocation of metals and trace elements in different tissues of piscivorous species Phalacrocorax carbo. Arch Environ Contam Toxicol 73:533–541. https://doi.org/10.1007/s00244-017-0452-3

    CAS  Article  Google Scholar 

  13. Jaspers V, Dauwe T, Pinxten R, Bervoets L, Blust R, Eens M (2004) The importance of exogenous contamination on heavy metal levels in birds. A field experiment with free-living great tits Parus major. J Environ Monit 6:356–360

    Article  Google Scholar 

  14. Jaspers VLB, Covaci A, Herzke D, Eulaers I, Eens M (2019) Bird feathers as a biomonitor for environmental pollutants: prospects and pitfalls. Trends Anal Chem 118:223–226. https://doi.org/10.1016/j.trac.2019.05.019

    CAS  Article  Google Scholar 

  15. Kenow KP, Meyer MW, Hines RK, Karasov WH (2007) Distribution and accumulation of mercury in tissues of captive-reared common loon (Gavia immer) chicks. Environ Toxicol Chem 26:1047–1055

    CAS  Article  Google Scholar 

  16. King KA, Cromartie E (1986) Mercury, cadmium, lead, and selenium in three waterbird species nesting in Galveston Bay, Texas, USA. Colonial Waterbird 9:90–94. https://doi.org/10.2307/1521147

    Article  Google Scholar 

  17. Land LF, Moring JB, Van Metre PC, Reutter DC, Mahler BJ, Shipp AA, Ulery RL (1998) Water quality in the Trinity River Basin, 1992-1995. US Geological Survey Circular 1171

  18. Matsumoto I, Wolfe J III, Hoffman D, Ishiga H (2010) Longitudinal distribution of heavy metals in fluvial sediments of the Trinity River, Texas. Texas J Sci 62:223–236

    CAS  Google Scholar 

  19. Moring JB (1997) Occurrence and distribution of organochlorine compounds in biological tissue and bed sediment from streams in the Trinity River basin, Texas, 1992-93. Water-Resource Investigations Report 97-4075, U.S. Geological Survey, Austin, TX

  20. Perkin J, Bonner T (2014) Historical changes in fish assemblage composition following water quality improvement in the mainstem Trinity River of Texas. River Res Appl 32:85–99

    Article  Google Scholar 

  21. Rutkowska M, Płotka-Wasylka J, Lubinska-Szczygeł M, Rozanska A, Mozejko-Ciesielska J, Namiesnik J (2018) Birds’ feathers—suitable samples for determination of environmental pollutants. Trends Anal Chem 109:97–115

    CAS  Article  Google Scholar 

  22. Saeki K, Okabe Y, Kim E, Tanabe S, Fukuda M, Tatsukawa R (2000) Mercury and cadmium in common cormorants (Phalacrocorax carbo). Environ Poll 108:249–255

    CAS  Article  Google Scholar 

  23. Sandoval C, Mora M, Sericano J, Rech R (2019) Persistent organic pollutants in livers and hg in feathers of neotropic cormorants (Phalacrocorax brasilianus) from the Trinity River Watershed (Texas, USA). Arch Environ Contam Toxicol 76:405–413. https://doi.org/10.1007/s00244-018-00596-4

    CAS  Article  Google Scholar 

  24. Scheuhammer AM (1987) The chronic toxicity of aluminum, cadmium, mercury, and lead in birds: a review. Environ Poll 46:263–295. https://doi.org/10.1016/0269-7491(87)90173-4

    CAS  Article  Google Scholar 

  25. Schulwitz SE, Chumchal MM, Johnson JA (2015) Mercury concentrations in birds from two atmospherically contaminated sites in North Texas, USA. Arch Environ Contam Toxicol 69:390–398

    CAS  Article  Google Scholar 

  26. Skoric S, Visnjić-Jeftic Z, Jaric I, Djikanovic V, Mickovic B, Nikcevic M, Lenhardt M (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicol Environ Saf 80:244–251. https://doi.org/10.1016/j.ecoenv.2012.03.004

    CAS  Article  Google Scholar 

  27. Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquatic Toxicol 35:27–37

    Article  Google Scholar 

  28. Telfair RC II, Morrison ML (2020) Neotropic cormorant (Phalacrocorax brasilianus), version 1.0. In: Poole AF (ed) Birds of the world. Cornell Lab of Ornithology, Ithaca. https://doi.org/10.2173/bow.neocor.01

    Chapter  Google Scholar 

  29. Torres Z, Mora M, Taylor R, Alvarez-Bernal D (2016) Tracking metal pollution in lake Chapala: concentrations in water, sediments, and fish. Bull Environ Contam Toxicol 97:418–424. https://doi.org/10.1007/s00128-016-1892-6

    CAS  Article  Google Scholar 

  30. Van Metre P, Callender E (1996) Identifying water-quality trends in the Trinity River, Texas, USA, 1969–1992, using sediment cores from Lake Livingston. Environ Geol 28:190–200

    Article  Google Scholar 

  31. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647. https://doi.org/10.5402/2011/40264

    Article  Google Scholar 

Download references

Acknowlegements

This research was supported by a TAMU-CONACYT grant to M. Mora and a fellowship to C. Sandoval from the Louis Stokes Alliance for Minority Participation Program at TAMU. Material preparation, data collection and analysis were performed by M. Mora, C. Sandoval, and R. Taylor. All authors read and approved the final manuscript. This revised version was improved by comments from two reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Mora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mora, M.A., Sandoval, C. & Taylor, R. Metals and Metalloids in Feathers of Neotropic Cormorants (Phalacrocorax brasilianus) Nesting in Lake Livingston and Richland Creek, Texas, USA. Bull Environ Contam Toxicol 107, 406–411 (2021). https://doi.org/10.1007/s00128-021-03161-3

Download citation

Keywords

  • Birds
  • Cormorants
  • Metals
  • Trace elements
  • Texas