Skip to main content

Removal Kinetics of Four Leacher Herbicides Through Solar Heterogeneous Photocatalysis as Influenced by Water Matrix Components

Abstract

This work focuses on the effect of dissolved substances on the photocatalytic degradation of four herbicides, metribuzin and terbuthylazine (triazine) and chlorotoluron and isoproturon (phenylurea) in three different water matrix (deionized, mineral and leaching water). To study the effect of heterogeneous photocatalysis on their degradation, TiO2 and ZnO were used as photocatalysts in tandem with an oxidant (Na2S2O8). Results show that the addition of both semiconductor materials significantly enhances degradation of the herbicides although in different proportions. Similar effectivity of both photocatalyst, assessed as a function of the mean half-lives calculated, was observed (85 and 87 min for TiO2 and Zn, respectively), while the mean half-life in the photolytic experiment was markedly higher (265 min). The degradation rate was in the order: metribuzin > chlorotoluron ≈ isoproturon > terbuthylazine. A faster degradation was observed in all cases in deionized water as compared to mineral and leaching water indicating that the presence of dissolved salts and organic matter considerably slows down the effectiveness of the treatment. Although after 180 min of treatment, total mineralization was not achieved in mineral and leaching water, this technology considerably reduces the pollutant load in complex water matrices. Therefore, solar heterogeneous photocatalytic processes, especially those involving ZnO and TiO2 as photocatalysts, offers a valuable tool for surface and groundwater remediation, especially in those areas receiving a large number of hours of sunshine per year.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manag 92:311–330. https://doi.org/10.1016/j.jenvman.2010.08.028

    CAS  Article  Google Scholar 

  2. Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29:342001. https://doi.org/10.1088/1361-6528/aac6ea

    CAS  Article  Google Scholar 

  3. Alcalde-Sanz L, Gawlik BM (2017) Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge—towards a legal instrument on water reuse at EU level, EUR 28962 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/804116, JRC109291

  4. Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na DA, (2019) Produced water characteristics, treatment and reuse: a review. J Water Process Eng 28:222–239. https://doi.org/10.1016/j.jwpe.2019.02.001

    Article  Google Scholar 

  5. Aliste M, Garrido I, Flores P, Hellín P, Vela N, Navarro S, Fenoll J (2020) Reclamation of agro-wastewater polluted with t hirteen pesticides by solar photocatalysis to reuse in irrigation of greenhouse lettuce grown. J Environ Manag 266:e110565. https://doi.org/10.1016/j.jenvman.2020.110565

    CAS  Article  Google Scholar 

  6. Børgesen CD, Fomsgaard IS, Plauborg F, Schelde K, Spliid NH (2015) Fate of pesticides in agricultural soils. DCA Report no. 062. Danish Centre for Food and Agriculture. Tjele, Denmark

  7. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    CAS  Article  Google Scholar 

  8. Durães N, Novo LAB, Candeias C, da Silva EF (2018) Distribution, transport and fate of pollutants. Soil pollution. Academic Press, Cambridge, pp 29–56

    Chapter  Google Scholar 

  9. Fenoll L, Ruiz E, Hellín P, Flores P, Navarro S (2011) Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil on leaching water under solar irradiation. Chemosphere 85:1262–1268. https://doi.org/10.1016/j.chemosphere.2011.07.022

    CAS  Article  Google Scholar 

  10. Fenoll J, Hellín P, Martínez CM, Flores P, Navarro S (2012a) Semiconductor-sensitized photodegradation of s-triazine and chloroacetanilide herbicides in leaching water using TiO2 and ZnO as catalyst under natural sunlight. J Photochem Photobiol A 238:81–87. https://doi.org/10.1016/j.jphotochem.2012.04.017

    CAS  Article  Google Scholar 

  11. Fenoll J, Hellín P, Martínez CM, Flore P, Navarro S (2012b) Semiconductor oxides-sensitized photodegradation of fenamiphos in leaching water under natural sunlight. Appl Catal B 115–116:31–37. https://doi.org/10.1016/j.apcatb.2011.12.023

    CAS  Article  Google Scholar 

  12. Fenoll J, Hellín P, Flores P, Martínez CM, Navarro S (2013) Degradation intermediates and reaction pathway of carbofuran in leaching water using TiO2 and ZnO as photocatalyst under natural sunlight. J Photochem Photobiol A 251:33–40. https://doi.org/10.1016/j.jphotochem.2012.10.012

    CAS  Article  Google Scholar 

  13. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 6:497–526. https://doi.org/10.1002/elsc.200520098

    CAS  Article  Google Scholar 

  14. Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65. https://doi.org/10.1007/s11244-005-3788-2

    CAS  Article  Google Scholar 

  15. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218. https://doi.org/10.3390/catal3010189

    CAS  Article  Google Scholar 

  16. Konstantinou IK, Zarkadis AK, Albanis TK (2001) Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. J Environ Qual 30:121–130. https://doi.org/10.2134/jeq2001.301121x

    CAS  Article  Google Scholar 

  17. Kosmulski M (2018) The pH dependent surface charging and points of zero charge. VII. Update. Adv Colloid Interface Sci 251:115–138. https://doi.org/10.1016/j.cis.2017.10.005

    CAS  Article  Google Scholar 

  18. Kurwadkar S (2017) Groundwater pollution and vulnerability assessment. Water Environ Res 89:1561–1577. https://doi.org/10.2175/106143017X15023776270584

    CAS  Article  Google Scholar 

  19. Kurwadkar S, Kanel SR, Nakarmi A (2020) Groundwater pollution: occurrence, detection, and remediation of organic and inorganic pollutants. Water Environ Res 92:1659–1668. https://doi.org/10.1002/wer.1415

    CAS  Article  Google Scholar 

  20. Lammoglia S-K, Brun F, Quemar T, Moeys J, Barriuso E, Gabrielle B, Mamy L (2018) Modelling pesticides leaching in cropping systems: effect of uncertainties in climate, agricultural practices, soil and pesticide properties. Environ Model Softw 109:342–352. https://doi.org/10.1016/j.envsoft.2018.08.007

    Article  Google Scholar 

  21. Liu B, Zhao X, Terashima C, Fujishima A, Nakata K (2014) Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys Chem Chem Phys 16:8751–8760. https://doi.org/10.1039/c3cp55317e

    CAS  Article  Google Scholar 

  22. Mack J, Bolton JR (1999) Photochemistry of nitrite and nitrate in aqueous solution: a review. J Photochem Photobiol A 128:1–13. https://doi.org/10.1016/S1010-6030(99)00155-0

    CAS  Article  Google Scholar 

  23. Mahmoodi NM, Armani M, Lymaee NY, Gharanjig K (2007) Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J Hazard Mater 145:65–71

    CAS  Article  Google Scholar 

  24. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    CAS  Article  Google Scholar 

  25. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res 139:118–131. https://doi.org/10.1016/j.watres.2018.03.042

    CAS  Article  Google Scholar 

  26. Navarro S, Vela N, Navarro G (2007) An overview on the environmental behaviour of pesticide residues in soils. Span J Agric Res 5:357–375. https://doi.org/10.5424/sjar/2007053-5344

    Article  Google Scholar 

  27. Pérez-Lucas G, Vela N, El Aatik A, Navarro S (2019) Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In: ML L, Soloneski S (eds) Pesticides—use and misuse and their impact in the environment. IntechOpen, London pp 45–71. https://doi.org/10.5772/intechopen.8241

  28. Pérez-Lucas G, Gambín M, Navarro S (2020) Leaching behaviour appraisal of eight persistent herbicides on a loam soil amended with different composted organic wastes using screening indices. J Environ Manag 273:111179. https://doi.org/10.1016/j.jenvman.2020.111179

    CAS  Article  Google Scholar 

  29. Reddy PVL, Kim K-H (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater 285:325–335. https://doi.org/10.1016/j.jhazmat.2014.11.036

    CAS  Article  Google Scholar 

  30. Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground and surface water and their effectiveness: a review. Sci Total Environ 384:1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046

    CAS  Article  Google Scholar 

  31. Ribeiro AR, Moreira NFF, Li Puma G, Silva AMT (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173. https://doi.org/10.1016/j.cej.2019.01.080

    CAS  Article  Google Scholar 

  32. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51. https://doi.org/10.1016/j.envint.2014.10.027

    CAS  Article  Google Scholar 

  33. Shankar MV, Nélieu S, Kerhoas L, Einhorn J (2008) Natural sunlight NO3-/NO2- induced photo-degradation of phenylurea herbicides in water. Chemosphere 71:1461–1468. https://doi.org/10.1016/j.chemosphere.2007.12.003

    CAS  Article  Google Scholar 

  34. Shifu C, Gengyu C (2005) Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2·SiO2/beads by sunlight. Sol Energy 79:1–9. https://doi.org/10.1016/j.solener.2004.10.006

    CAS  Article  Google Scholar 

  35. Skevas T (2020) Evaluating alternative policies to reduce pesticide groundwater pollution in Dutch arable farming. J Environ Plan Manag 63:733–750. https://doi.org/10.1080/09640568.2019.1606618

    Article  Google Scholar 

  36. Steffens K, Larsbo M, Moeys J, Jarvis N, Lewan E (2013) Predicting pesticide leaching under climate change: importance of model structure and parameter uncertainty. Agric Ecosys Environ 172:24–34. https://doi.org/10.1016/j.agee.2013.03.018

    CAS  Article  Google Scholar 

  37. Uyguner-Demirel CS, Birben NC, Bekbolet M (2017) Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review. Catal Today 284:202–214. https://doi.org/10.1016/j.cattod.2016.12.030

    CAS  Article  Google Scholar 

  38. Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517. https://doi.org/10.1016/j.cej.2017.11.059

    CAS  Article  Google Scholar 

  39. Wang Y, Roddick FA, Fan L (2017) Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon. Chemosphere 185:297–308. https://doi.org/10.1016/j.chemosphere.2017.06.122

    CAS  Article  Google Scholar 

  40. Warneck P, Wurzinger C (1988) Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. J Phys Chem 92:6278–6283. https://doi.org/10.1021/j100333a022

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Murcia for financial support (Project 4711).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simón Navarro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gambín, M., Pérez-Lucas, G. & Navarro, S. Removal Kinetics of Four Leacher Herbicides Through Solar Heterogeneous Photocatalysis as Influenced by Water Matrix Components. Bull Environ Contam Toxicol 106, 989–995 (2021). https://doi.org/10.1007/s00128-021-03158-y

Download citation

Keywords

  • Herbicides
  • Kinetics
  • Photocatalytical degradation
  • Water matrix