Skip to main content

Efficient Degradation of 2,4-Dichlorophenol on Activation of Peroxymonosulfate Mediated by MnO2

Abstract

Sulfate radical based-advanced oxidation process has received increasing interest in the remediation of wastewater and contaminated soil. In this study, degradation of 2, 4-dichlorophenol (2, 4-DCP) was investigated over peroxymonosulfate (PMS) activation by MnO2, which was prepared by liquid-phase oxidation method. The prepared MnO2 was characterized by transition electron microscopy, X-ray diffraction, N2 adsorption–desorption, and X-ray photoelectron spectroscopy. Characterization results showed that α-MnO2 exhibited the highest surface area and Mn (III) content. The PMS activation by MnO2 in 2, 4-DCP degradation followed the order of α-MnO2 >  γ-MnO2 > β-MnO2, which is dependent on the properties of MnO2 including crystal structure, surface area and Mn (III) content. Influences of initial concentration of 2, 4-DCP, PMS and MnO2 dosage, pH and co-existing inorganic ions on the degradation were examined. Electron paramagnetic resonance (EPR) and quenching experiments with ethanol and tert-butanol suggested that sulfate radicals were the dominant radicals in the process. Findings in this study indicated that α-MnO2 was an attractive catalyst for activation of PMS to degrade 2, 4-DCP in aqueous solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmadi M, Ghanbari F (2019) Organic dye degradation through peroxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: mechanism and identification of intermediates. Mater Res Bull 111:43–52

    CAS  Article  Google Scholar 

  2. Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797

    CAS  Article  Google Scholar 

  3. Anipsitakis GP, Dionysiou DD, Gonzalez MA (2006) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds implications of chloride ions. Environ Sci Technol 40:1000–1007

    CAS  Article  Google Scholar 

  4. Bayarri B, Giménez J, Curcó D, Esplugas S (2005) Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: kinetics, actinometries and models. Catal Today 101:227–236

    CAS  Article  Google Scholar 

  5. Chen A et al (2012) Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol. Chem Eng J 191:85–94

    CAS  Article  Google Scholar 

  6. Chen G et al (2013) Cadmium removal and 2,4-dichlorophenol degradation by immobilized phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Appl Microbiol Biotechnol 97:3149–3157

    CAS  Article  Google Scholar 

  7. Chen Z, Jin J, Song X, Zhang G, Zhang S (2018) Redox conversion of arsenite and nitrate in the UV/quinone systems. Environ Sci Technol 52:10011–10018

    CAS  Article  Google Scholar 

  8. Dong CD, Chen CW, Tsai ML, Chang JH, Lyu SY, Hung CM (2019) Degradation of 4-nonylphenol in marine sediments by persulfate over magnetically modified biochars. Bioresour Technol 281:143–148

    CAS  Article  Google Scholar 

  9. Du J, Bao J, Liu Y, Kim SH, Dionysiou DD (2019) Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation. Chem Eng J 376:119193

    CAS  Article  Google Scholar 

  10. Eker S, Kargi F (2008) Biological treatment of 2,4-dichlorophenol containing synthetic wastewater using a rotating brush biofilm reactor. Bioresour Technol 99:2319–2325

    CAS  Article  Google Scholar 

  11. Fang G, Liu C, Gao J, Dionysiou DD, Zhou D (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49:5645–5653

    CAS  Article  Google Scholar 

  12. Feng Y, Liu J, Wu D, Zhou Z, Deng Y, Zhang T, Shih K (2015) Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem Eng J 280:514–524

    CAS  Article  Google Scholar 

  13. Ghanbari F, Martínez-Huitle CA (2019) Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: a comparative study. J Electroanal Chem 847:113182

    CAS  Article  Google Scholar 

  14. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62

    CAS  Article  Google Scholar 

  15. Guan Y-H, Ma J, Li X-C, Fang J-Y, Chen L-W (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/Peroxymonosulfate system. Environ Sci Technol 45:9308–9314

    CAS  Article  Google Scholar 

  16. Hu P, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B 181:103–117

    CAS  Article  Google Scholar 

  17. Huang G-X, Wang C-Y, Yang C-W, Guo P-C, Yu H-Q (2017) Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe. Environ Sci Technol 51:12611–12618

    CAS  Article  Google Scholar 

  18. Huang J, Dai Y, Singewald K, Liu CC, Saxena S, Zhang H (2019) Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chem Eng J 370:906–915

    CAS  Article  Google Scholar 

  19. Huang J, Zhong S, Dai Y, Liu CC, Zhang H (2018) Effect of MnO2 phase structure on the oxidative reactivity toward bisphenol A degradation. Environ Sci Technol 52:11309–11318

    CAS  Article  Google Scholar 

  20. Huang YH, Huang YF, Huang CI, Chen CY (2009) Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J Hazard Mater 170:1110–1118

    CAS  Article  Google Scholar 

  21. Im J, Prevatte CW, Campagna SR, Loffler FE (2015) Identification of 4-hydroxycumyl alcohol as the major MnO2-mediated Bisphenol A transformation product and evaluation of its environmental fate. Environ Sci Technol 49:6214–6221

    CAS  Article  Google Scholar 

  22. Jia L, Shen Z, Guo W, Zhang Y, Zhu H, Ji W, Fan M (2015) QSAR models for oxidative degradation of organic pollutants in the Fenton process. J Taiwan Inst Chem Eng 46:140–147

    CAS  Article  Google Scholar 

  23. Jin Z, Yu C, Wang X, Wan Y, Li D, Lu G (2011) Liquid phase hydrodechlorination of chlorophenols at lower temperature on a novel Pd catalyst. J Hazard Mater 186:1726–1732

    CAS  Article  Google Scholar 

  24. Kang L, Zhang M, Liu ZH, Ooi K (2007) IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim Acta Part A Mol Biomol Spectrosc 67:864–869

    Article  CAS  Google Scholar 

  25. Karci A, Arslan-Alaton I, Olmez-Hanci T, Bekbölet M (2012) Transformation of 2,4-dichlorophenol by H2O2/UV-C, fenton and photo-fenton processes: oxidation products and toxicity evolution. J Photochem Photobiol A 230:65–73

    CAS  Article  Google Scholar 

  26. Kim H-S, Stair PC (2004) Bacterially produced manganese oxide and todorokite: UV raman spectroscopic comparison. J Phys Chem B 108:17019–17026

    CAS  Article  Google Scholar 

  27. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    CAS  Article  Google Scholar 

  28. Liang C, Su H-W (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562

    CAS  Article  Google Scholar 

  29. Liang C, Wang ZS, Mohanty N (2006) Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Sci Total Environ 370:271–277

    CAS  Article  Google Scholar 

  30. Lin K, Liu W, Gan J (2009) Oxidative removal of Bisphenol A by manganese dioxide: efficacy, products, and pathways. Environ Sci Technol 43:3860–3864

    CAS  Article  Google Scholar 

  31. Liu C, Pan D, Tang X, Hou M, Zhou Q, Zhou J (2016) Degradation of rhodamine B by the α-MnO2/peroxymonosulfate system. Water Air Soil Pollut 227:92

    Article  CAS  Google Scholar 

  32. Liu J, Zhao Z, Shao P, Cui F (2015) Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem Eng J 262:854–861

    CAS  Article  Google Scholar 

  33. Liu L, Chen F, Yang F, Chen Y, Crittenden J (2012) Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chem Eng J 181–182:189–195

    Article  CAS  Google Scholar 

  34. Luo S, Duan L, Sun B, Wei M, Li X, Xu A (2015) Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl Catal B Environ 164:92–99

    CAS  Article  Google Scholar 

  35. Nfodzo P, Choi H (2011) Triclosan decomposition by sulfate radicals: effects of oxidant and metal doses. Chem Eng J 174:629–634

    CAS  Article  Google Scholar 

  36. Oh W-D, Dong Z, Lim T-T (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal B Environ 194:169–201

    CAS  Article  Google Scholar 

  37. Peng X et al (2017) Double-exchange effect in two-dimensional MnO2 nanomaterials. J Am Chem Soc 139:5242–5248

    CAS  Article  Google Scholar 

  38. Prélot B, Poinsignon C, Thomas F, Schouller E, Villiéras F (2003) Structural–chemical disorder of manganese dioxides: 1. Influence on surface properties at the solid–electrolyte interface. J Colloid Interface Sci 257:77–84

    Article  Google Scholar 

  39. Qin W, Fang G, Wang Y, Wu T, Zhu C, Zhou D (2016) Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: kinetics, products, and reactive species identification. Chemosphere 148:68–76

    CAS  Article  Google Scholar 

  40. Robinson DM et al (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135:3494–3501

    CAS  Article  Google Scholar 

  41. Saputra E, Muhammad S, Sun H, Ang H, Tade M, Wang S (2013) Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ Sci Technol 47:5882–5887

    CAS  Article  Google Scholar 

  42. Saputra E, Muhammad S, Sun H, Patel A, Shukla P, Zhu ZH, Wang S (2012) α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catal Commun 26:144–148

    CAS  Article  Google Scholar 

  43. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley-Inter-science, New York

    Google Scholar 

  44. Septian A, Shin WS (2019) Oxidative removal of sulfadiazine using synthetic and natural manganese dioxides. Environ Technol 1:1–13

    Google Scholar 

  45. Shukla P, Wang S, Singh K, Ang HM, Tadé MO (2010) Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl Catal B 99:163–169

    CAS  Article  Google Scholar 

  46. Tan C, Gao N, Deng Y, Deng J, Zhou S, Li J, Xin X (2014) Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J Hazard Mater 276:452–460

    CAS  Article  Google Scholar 

  47. Wang C, Ma J, Liu F, He H, Zhang R (2015a) The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. J Phys Chem C 119:23119–23126

    CAS  Article  Google Scholar 

  48. Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517

    CAS  Article  Google Scholar 

  49. Wang L et al (2018) Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. Chem Eng J 352:1004–1013

    CAS  Article  Google Scholar 

  50. Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem A Eur J 9:300–306

    Article  Google Scholar 

  51. Wang Y, Chen S (2015) Droplets impact on textured surfaces: mesoscopic simulation of spreading dynamics. Appl Surf Sci 327:159–167

    CAS  Article  Google Scholar 

  52. Wang Y, Indrawirawan S, Duan X, Sun H, Ang H, Tadé M, Wang S (2015b) New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures. Chem Eng J 266:12–20

    CAS  Article  Google Scholar 

  53. Wang Y, Ren H, Pan H, Liu J, Zhang L (2015c) Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase. J Hazard Mater 286:269–275

    Article  CAS  Google Scholar 

  54. Wang Y, Zhao X, Cao D, Wang Y, Zhu Y (2017) Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl Catal B Environ 211:79–88

    CAS  Article  Google Scholar 

  55. Xie M, Tang J, Kong L, Lu W, Natarajan V, Zhu F, Zhan J (2019) Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chem Eng J 360:1213–1222

    CAS  Article  Google Scholar 

  56. Xu J, Lv X, Li J, Li Y, Shen L, Zhou H, Xu X (2012) Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. J Hazard Mater 225–226:36–45

    Article  CAS  Google Scholar 

  57. Zhang C, Zhou M, Ren G, Yu X, Ma L, Yang J, Yu F (2015a) Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424

    CAS  Article  Google Scholar 

  58. Zhang H, Chen W-R, Huang C-H (2008) Kinetic modeling of oxidation of antibacterial agents by manganese oxide. Environ Sci Technol 42:5548–5554

    CAS  Article  Google Scholar 

  59. Zhang H, Huang C-H (2003) Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ Sci Technol 37:2421–2430

    CAS  Article  Google Scholar 

  60. Zhang J, Li Y, Wang L, Zhang C, He H (2015b) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5:2305–2313

    CAS  Article  Google Scholar 

  61. Zhao Y, Zhao Y, Zhou R, Mao Y, Tang W, Ren H (2016) Insights into the degradation of 2,4-dichlorophenol in aqueous solution by α-MnO2 nanowire activated persulfate: catalytic performance and kinetic modeling. RSC Adv 6:35441–35448

    CAS  Article  Google Scholar 

  62. Zhou H, Shen YF, Wang JY, Chen X, O’Young C-L, Suib SL (1998) Studies of decomposition of H2O2 over manganese oxide octahedral molecular sieve materials. J Catal 176:321–328

    CAS  Article  Google Scholar 

  63. Zhou J, Wu K, Wang W, Xu Z, Wan H, Zheng S (2014) Pd supported on boron-doped mesoporous carbon as highly active catalyst for liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol. Appl Catal A 470:336–343

    CAS  Article  Google Scholar 

  64. Zhou P et al (2018) Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J Hazard Mater 344:1209–1219

    CAS  Article  Google Scholar 

  65. Zhou Y, Wang X, Zhu C, Dionysiou DD, Zhao G, Fang G, Zhou D (2018) New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation. Water Res 142:208–216

    CAS  Article  Google Scholar 

  66. Zhu J, Wang J, Shan C, Zhang J, Lv L, Pan B (2019a) Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation. Chem Eng J 375:122009

    CAS  Article  Google Scholar 

  67. Zhu S, Li X, Kang J, Duan X, Wang S (2019b) Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ Sci Technol 53:307–315

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (NO. 2018YFC1803100), Scientific Research Project of Nanjing Xiaozhuang University (NO. 2017NXY46), Excellent Science and Technology Innovation Group of Jiangsu Province, Innovative Practice of Environmental Engineering Subject Based on New Engineering Construction.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shengtian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 444 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., An, F., Li, M. et al. Efficient Degradation of 2,4-Dichlorophenol on Activation of Peroxymonosulfate Mediated by MnO2. Bull Environ Contam Toxicol 107, 255–262 (2021). https://doi.org/10.1007/s00128-021-03109-7

Download citation

Keywords

  • Manganese oxides
  • 2, 4-dichlorophenol
  • Peroxymonosulfate
  • Activation
  • Degradation